高中数学(苏教版)必修4精品教学案全集:第1章 第十三课 三角函数的性质 .doc
《高中数学(苏教版)必修4精品教学案全集:第1章 第十三课 三角函数的性质 .doc》由会员分享,可在线阅读,更多相关《高中数学(苏教版)必修4精品教学案全集:第1章 第十三课 三角函数的性质 .doc(5页珍藏版)》请在课堂库上搜索。
1、第十三课时 三角函数的性质教学目标:理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义,会求简单函数的定义域、值域、最小正周期和单调区间;渗透数形结合思想,培养辩证唯物主义观点.教学重点:正、余弦函数的性质教学难点:正、余弦函数性质的理解与应用教学过程:.课题导入上节课,我们研究了正、余弦函数的图象,今天,我们借助它们的图象来研究它们有哪些性质.(1)定义域:正弦函数、余弦函数的定义域都是实数集R或(,),分别记作:ysinx,xRycosx,xR(2)值域因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以sinx1,cosx1,即1sinx1,1cosx1也就是说,正弦函数、
2、余弦函数的值域都是1,1.其中正弦函数y=sinx,xR当且仅当x2k,kZ时,取得最大值1.当且仅当x2k,kZ时,取得最小值1.而余弦函数ycosx,xR当且仅当x2k,kZ时,取得最大值1.当且仅当x(2k1),kZ时,取得最小值1.(3)周期性由 (kZ)知:正弦函数值、余弦函数值是按照一定规律不断重复地取得的.一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(xT)f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.由此可知,2,4,2,4,2k(kZ且k0)都是这两个函数的周期.对于一个周期函数f(x),如果在它所有的周期
3、中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.根据上述定义,可知:正弦函数、余弦函数都是周期函数,2k(kZ且k0)都是它的周期,最小正周期是2.(4)奇偶性正弦函数是奇函数,余弦函数是偶函数.(5)单调性从ysinx,x,的图象上可看出:当x,时,曲线逐渐上升,sinx的值由1增大到1.当x,时,曲线逐渐下降,sinx的值由1减小到1.结合上述周期性可知:正弦函数在每一个闭区间2k,2k(kZ)上都是增函数,其值从1增大到1;在每一个闭区间2k,2k(kZ)上都是减函数,其值从1减小到1.余弦函数在每一个闭区间(2k1),2k(kZ)上都是增函数,其值从1增加到1;在每一
4、个闭区间2k,(2k1)(kZ)上都是减函数,其值从1减小到1.例1求使下列函数取得最大值的自变量x的集合,并说出最大值是什么.(1)ycosx1,xR; (2)ysin2x,xR.解:(1)使函数ycosx1,xR取得最大值的x的集合,就是使函数ycosx,xR取得最大值的x的集合xx2k,kZ.函数ycosx1,xR的最大值是112.(2)令Z2x,那么xR必须并且只需ZR,且使函数ysinZ,ZR取得最大值的Z的集合是ZZ2k,kZ由2xZ2k,得xk即:使函数ysin2x,xR取得最大值的x的集合是xxk,kZ.函数ysin2x,xR的最大值是1.例2求下列函数的定义域:(1)y1 (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学苏教版必修4精品教学案全集:第1章 第十三课 三角函数的性质 高中数学 苏教版 必修 精品 教学 全集 第十三 三角函数 性质
