2021届高三数学(理)一轮复习课时跟踪检测:第6章 第4节 数列求和 WORD版含解析.doc
《2021届高三数学(理)一轮复习课时跟踪检测:第6章 第4节 数列求和 WORD版含解析.doc》由会员分享,可在线阅读,更多相关《2021届高三数学(理)一轮复习课时跟踪检测:第6章 第4节 数列求和 WORD版含解析.doc(8页珍藏版)》请在课堂库上搜索。
1、第六章数列第四节数列求和A级基础过关|固根基|1.(2019届广东六校第一次联考)已知数列an的前n项和为Snn2n1,bn(1)nan(nN*),则数列bn的前50项和为()A49B50C99D100解析:选A由题意得,当n2时,anSnSn12n,当n1时,a1S13,所以数列bn的前50项和为346810969810014849,故选A2(2019届江西五校联考)设Sn是数列an的前n项和,若anSn2n,22an2an1,则()ABCD解析:选D因为anSn2n,所以an1Sn12n1,得,2an1an2n,所以2an2an12n1.又22an2an12n1,所以bnn1,所以,则11
2、,故选D3(2019届湖北武汉部分重点中学联考)等比数列an的前n项和为Sn,若对任意的正整数n,Sn24Sn3恒成立,则a1的值为()A3B1C3或1D1或3解析:选C设等比数列an的公比为q,当q1时,Sn2(n2)a1,Snna1.由Sn24Sn3,得(n2)a14na13,即3a1n2a13,若对任意的正整数n,3a1n2a13恒成立,则a10且2a130,矛盾,所以q1.所以Sn,Sn2,代入Sn24Sn3并化简,得a1(4q2)qn33a13q,若对任意的正整数n该等式恒成立,则有解得或故a11或3,故选C4(2019届广州市调研测试)已知等比数列an的前n项和为Sn,若S37,S
3、663,则数列nan的前n项和为()A3(n1)2nB3(n1)2nC1(n1)2nD1(n1)2n解析:选D设等比数列an的公比为q,易知q1,所以由题设得两式相除得1q39,解得q2,进而可得a11,所以ana1qn12n1,所以nann2n1.设数列nan的前n项和为Tn,则Tn120221322n2n1,2Tn121222323n2n,两式作差得Tn12222n1n2nn2n1(1n)2n,故Tn1(n1)2n.故选D5(2019届广东佛山调研)数列an满足a1a2a3an2n1,则数列an的通项公式为_解析:由a1a2a3an2n1,得a1a2a3anan12(n1)1,两式相减,得
4、an12,即an2n1(n2)又a13,即a16,不符合上式,所以an答案:an6已知数列an满足an12an4.若首项a12,则数列an的前9项和S9_解析:因为an12an4,所以an142(an4),故an4是以a142为首项,2为公比的等比数列,所以an42n,即an2n4.Sna1a2an(214)(224)(2n4)(21222n)4n4n2n124n,所以S9210249986.答案:9867(2019年全国卷)记Sn为等比数列an的前n项和若a11,S3,则S4_解析:解法一:设等比数列an的公比为q,由a11及S3,易知q1.把a11代入S3,得1qq2,解得q,所以S4.解
5、法二:设等比数列an的公比为q,因为S3a1a2a3a1(1qq2),a11,所以1qq2,解得q,所以a4a1q3,所以S4S3a4.答案:8已知数列an的首项a11,an1,则数列anan1的前10项和为_解析:因为an1,所以2,即2,所以是首项为1,公差为2的等差数列,所以2n1,所以an,所以anan1,所以anan1的前10项和为.答案:9(2019届长春市第二次质量监测)各项均为整数的等差数列an,其前n项和为Sn,a11,a2,a3,S41成等比数列(1)求an的通项公式;(2)求数列(1)nan的前2n项和T2n.解:(1)设等差数列an的公差为d,由题意可得(12d)2(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高三数学理一轮复习课时跟踪检测:第6章第4节 数列求和 WORD版含解析 2021 届高三 数学 一轮 复习 课时 跟踪 检测 数列 求和 WORD 解析

链接地址:https://www.ketangku.com/file-304116.html