2023届高三寒假数学二轮微专题45讲 02函数对称性与周期性及应用.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高三寒假数学二轮微专题45讲 02函数对称性与周期性及应用 2023 届高三 寒假 数学 二轮 专题 45 02 函数 对称性 周期性 应用
- 资源描述:
-
1、函数对称性与周期性及应用一 函数的对称性:函数对称性主要有轴对称和中心对称两种情况. 函数对称性研究的是一个函数本身所具有的性质.1.轴对称: 函数图象关于一条垂直于轴的直线对称,则当函数图象上任意两个点到直线的距离相等且函数值时. 我们就称函数关于对称.(公众号:凌晨讲数学)代数表示: (1). (2). 即当两个自变量之和为一个定值,函数值相等时,则函数图像都关于直线对称.一般地,若函数满足,则函数的图象关于直线对称.特别地,偶函数(关于轴对称),即当横坐标到原点的距离相等(横坐标互为相反数),函数值相等.2.中心对称:函数上任意一点()关于点对称的点()也在函数图像上,此时我们就称函数为
2、关于点()对称的中心对称图像,点()为对称中心. 用代数式表示:(1). (2). 一般地,若函数满足,则函数的图象关于点对称.特别地,奇函数(关于原点对称),即当横坐标到原点的距离相等(横坐标互为相反数),函数值相反.(公众号:凌晨讲数学)3.注释: 对称性的作用: 知一半而得全部,即一旦函数具备对称性,则只需分析一侧的性质,便可得到整个函数的性质.(1).利用对称性求得函数在某点的函数值.(2).利用对称性可以在作图时只需作出一半的图象,然后再根据对称性作出另一半的图象.(3).对于轴对称函数,关于对称轴对称的两个单调区间单调性相反;对于中心对称函数,关于对称中心对称的两个单调区间单调性相
3、同.二函数的周期性1.定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期.2.函数周期性有关结论:设是非零常数,若对于函数定义域内的任一变量有下列条件之一成立,则函数是周期函数,且是它的一个周期.(1). (2).(3). (4).3.函数的对称性与周期性性质1. 若函数同时关于直线与轴对称,则函数必为周期函数,且.性质2. 若函数同时关于点与点中心对称,则函数必为周期函数,且.(公众号:凌晨讲数学)性质3.若函数既关于点中心对称,又关于直线轴对称,则函数必为周期函数,且.特别地:(1).若是奇函数且
展开阅读全文