2015高三人教版数学(理)一轮复习课件 第二章 函数、导数及其应用 第十二节.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015高三人教版数学理一轮复习课件 第二章 函数、导数及其应用 第十二节 2015 三人 数学 一轮 复习 课件 第二 函数 导数 及其 应用 第十二
- 资源描述:
-
1、第二章 函数、导数及其应用第十二节导数的应用(一)第二章 函数、导数及其应用主干知识梳理一、函数的单调性在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.f(x)0f(x)在(a,b)上为f(x)0f(x)在(a,b)上为增函数减函数第二章 函数、导数及其应用二、函数的极值1函数的极小值:函数yf(x)在点xa的函数值f(a)比它在点xa附近其它点的函数值都小,f(a)0,而且在点xa附近的左侧,右侧,则点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值f(x)0f(x)0第二章 函数、导数及其应用2函数的极大值:函数yf(x)在点xb的函数值f(
2、b)比它在点xb附近的其他点的函数值都大,f(b)0,而且在点xb附近的左侧,右侧,则点b叫做函数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值极小值点,极大值点统称为极值点,极大值和极小值统称为极值f(x)0f(x)0第二章 函数、导数及其应用三、函数的最值1在闭区间a,b上连续的函数f(x)在a,b上必有最大值与最小值2若函数f(x)在a,b上单调递增,则为函数的最小值,为函数的最大值;若函数f(x)在a,b上单调递减,则为函数的最大值,为函数的最小值f(a)f(b)f(a)f(b)第二章 函数、导数及其应用基础自测自评1(教材习题改编)若函数f(x)x3ax23x9在x3时取得
3、极值,则 a等于()A2B3C4 D5Df(x)3x22ax3,f(3)0,a5.第二章 函数、导数及其应用2(2013浙江高考)已知函数yf(x)的图象是下列四个图象之一,且其导函数yf(x)的图象如右图所示,则该函数的图象是()第二章 函数、导数及其应用第二章 函数、导数及其应用B由导函数图象知,函数f(x)在1,1上为增函数当x(1,0)时f(x)由小到大,则f(x)图象的增长趋势由缓到快,当x(0,1)时f(x)由大到小,则f(x)的图象增长趋势由快到缓,故选B.第二章 函数、导数及其应用3(2012陕西高考)设函数 f(x)xex,则()Ax1为f(x)的极大值点Bx1为f(x)的极
4、小值点Cx1为f(x)的极大值点Dx1为f(x)的极小值点D求导得f(x)exxexex(x1),令f(x)ex(x1)0,解得x1,易知x1是函数f(x)的极小值点第二章 函数、导数及其应用第二章 函数、导数及其应用5已知a0,函数f(x)x3ax在1,)上是单调增函数,则a的最大值是_解析 f(x)3x2a在x1,)上f(x)0,则f(1)0a3.答案 3第二章 函数、导数及其应用关键要点点拨1f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定如函数f(x)x3在(,)上单调递增,但f(x)0,所以f(x)0是f(x)为增函数的充分不必要条件2可导函数的极值
5、点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)0是可导函数f(x)在xx0处取得极值的必要不充分条件例如函数yx3在x0处有y|x00,但x0不是极值点此外,函数不可导的点也可能是函数的极值点第二章 函数、导数及其应用3可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较第二章 函数、导数及其应用运用导数解决函数的单调性问题第二章 函数、导数及其应用第二章 函数、导数及其应用第二章 函数、导数及其应用规律方法求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求f(x),
6、令f(x)0,求出它在定义域内的一切实数根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性第二章 函数、导数及其应用跟踪训练1已知aR,函数f(x)(x2ax)ex(xR,e为自然对数的底数)(1)当a2时,求函数f(x)的单调递增区间;(2)是否存在a使函数f(x)为R上的单调递减函数,若存在,求出a的取值范围;若不存在,请说明理由第二章 函数、导数及其应用第二章 函数、导数及其应用
7、(2)若函数f(x)在R上单调递减,则f(x)0对xR都成立,即x2(a2)xaex0对xR都成立ex0,x2(a2)xa0对xR都成立(a2)24a0,即a240,这是不可能的故不存在a使函数f(x)在R上单调递减第二章 函数、导数及其应用运用导数解决函数的极值问题第二章 函数、导数及其应用第二章 函数、导数及其应用第二章 函数、导数及其应用第二章 函数、导数及其应用第二章 函数、导数及其应用第二章 函数、导数及其应用第二章 函数、导数及其应用规律方法求函数极值的步骤(1)确定函数的定义域;(2)求方程f(x)0的根;(3)用方程f(x)0的根顺次将函数的定义域分成若干个小开区间,并形成表格
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-1017855.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020年最新工厂企业临时工劳动合同范本(实用版).pdf
