2021-2022高中数学人教版必修5教案:2-3等差数列的前N项和 (系列三) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修5教案:2-3等差数列的前N项和 系列三 WORD版含答案 2021 2022 高中 学人 必修 教案 等差数列 系列 WORD 答案
- 资源描述:
-
1、等差数列的前n项和(第一课时)教学设计【教学目标】一、知识与技能1.掌握等差数列前n项和公式;2.体会等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式。二、过程与方法1 通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2. 通过公式的运用体会方程的思想。三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。【教学重点】等差数列前n项和公式的推导和应用。【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。【重点、难点解决策略】本课在设计上采用
2、了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。【教学用具】 多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习等差数列的前n项和,那么什么叫数列的前n项和呢,对于数列an:a1,a2,a3,an,我们称a1+a2+a3+an为数列an的前n项和,用sn表示,记sn=a1+a2+a3+an,如S1 =a1, S7 =a1+a2+a3+a7,下面我们来共同探究如何求等差数列的前n项和。二、
3、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。特点: 首项与末项的和: 1100101, 第2项与倒数第2项的和: 299 101, 第3项与倒数第3项的和: 398 101, 第50项与倒数第50项的和: 5051101,于是所求的和是: 101505050。1+2+3
4、+ +100= 10150 = 5050同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办呢?探索与发现1:假如让你计算从第一层到第21层的珠宝数,高斯的首尾配对法行吗?即计算S21=1+2+3+ +21的值,在这个过程中让学生发现当项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助学生思考解决问题的办法,为引出倒序相加法做铺垫。把“全等三角形”倒置,与原图构成平行四边形。平行四边形中的每行宝石的个数均为21个,共21行。有什么启发? 1 + 2 + 3 + +20 +21 21 + 2
5、0 + 19 + + 2 +1S21=1+2+3+21=(21+1)212=231这个方法也很好,那么项数为偶数这个方法还行吗?探索与发现2:第5层到12层一共有多少颗圆宝石?学生探究的同时通过动画演示帮助学生思考刚才的方法是否同样可行?请同学们自主探究一下(老师演示动画帮助学生)S8=5+6+7+8+9+10+11+12=【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否可行。从而得出倒序相加法适合任意项数的等差数列求和,最终确立倒序相加的思想和方法!好,这样我们就找到了一个好方法倒序相加法!现在来试一试如何求下面这个等差数列的前n项和?问题2:等差数列1,2,3,n, 的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-462135.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
