2019版数学人教B版选修4-5训练:3-1 数学归纳法原理 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019版数学人教B版选修4-5训练:3-1 数学归纳法原理 WORD版含解析 2019 学人 选修 训练 数学 归纳法 原理 WORD 解析
- 资源描述:
-
1、03第三章数学归纳法与贝努利不等式3.1数学归纳法原理课时过关能力提升1.设f(n)=1+12+13+13n-1(nN*),则f(n+1)-f(n)等于()A.13n+2B.13n+13n+1C.13n+1+13n+2D.13n+13n+1+13n+2解析:因为f(n)=1+12+13+13n-1,所以f(n+1)=1+12+13+13n-1+13n+13n+1+13n+2.所以f(n+1)-f(n)=13n+13n+1+13n+2.答案:D2.某个命题与正整数n有关,若当n=k(kN*)时该命题成立,则可推得当n=k+1时该命题也成立.现已知当n=5时该命题不成立,则可推得()A.当n=6时
2、该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立解析:如果n=4时命题成立,那么由题设,n=5时命题也成立.上面的判断作为一个命题,那么它的逆否命题是:如果n=5时命题不成立,那么n=4时命题也不成立.原命题成立,它的逆否命题一定成立.答案:C3.用数学归纳法证明n(n+1)(2n+1)能被6整除时,由归纳假设推证当n=k+1时命题成立,需将当n=k+1时的原式表示成()A.k(k+1)(2k+1)+6(k+1)B.6k(k+1)(2k+1)C.k(k+1)(2k+1)+6(k+1)2D.以上都不对答案:C4.若命题P(n)对n=k(k1,kN*)成立,则
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-572523.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
