2020-2021学年新教材高考数学 第八章 立体几何 5 考点1 线面垂直的判定与性质2练习(含解析)(选修2).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2021学年新教材高考数学 第八章 立体几何 考点1 线面垂直的判定与性质2练习含解析选修2 2020 2021 学年 新教材 高考 数学 第八 考点 垂直 判定 性质 练习 解析 选修
- 资源描述:
-
1、高考真题(2019北京卷(理)已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l,m,则lm. 正确;(2)如果l,lm,则m.不正确,有可能m在平面内;(3)如果lm,m,则l.不正确,有可能l与斜交、l.【答案】如果l,m,则lm.(2019北京卷(理)如图,在四棱锥PABCD中,PA平面ABCD,ADCD,ADBC,PA=AD=CD=2,BC=3E为PD的中点,点F在PC上,且()求证:CD平面PAD;()求二面角FAEP的余弦值;()
2、设点G在PB上,且判断直线AG是否在平面AEF内,说明理由【解析】()由于PA平面ABCD,CD平面ABCD,则PACD,由题意可知ADCD,且PAAD=A,由线面垂直的判定定理可得CD平面PAD()以点A为坐标原点,平面ABCD内与AD垂直的直线为x轴,AD,AP方向为y轴,z轴建立如图所示的空间直角坐标系,易知:,由可得点F的坐标为,由可得,设平面AEF的法向量为:,则,据此可得平面AEF的一个法向量为:,很明显平面AEP的一个法向量为,二面角F-AE-P的平面角为锐角,故二面角F-AE-P的余弦值为.()易知,由可得,则,注意到平面AEF的一个法向量为:,其且点A在平面AEF内,故直线A
3、G在平面AEF内.【答案】()见解析;();()见解析.(2019全国II卷(理)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AE=A1E,求二面角BECC1的正弦值.【解析】分析:(1)利用长方体的性质,可以知道侧面,利用线面垂直的性质可以证明出,这样可以利用线面垂直的判定定理,证明出平面;(2)以点坐标原点,以分别为轴,建立空间直角坐标系,设正方形的边长为,求出相应点的坐标,利用,可以求出之间的关系,分别求出平面、平面的法向量,利用空间向量的数量积公式求出二面角的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角的正弦值.详解:证明(1)因为是长方体,所以侧面,而平面,所以又,平面,因此平面;(2)以点坐标原点,以分别为轴,建立如下图所示的空间直角坐标系,因为,所以,所以,设是平面的法向量,所以,设是平面的法向量,所以,二面角的余弦值的绝对值为,所以二面角的正弦值为.【答案】(1)证明见解析;(2)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-580058.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
