分享
分享赚钱 收藏 举报 版权申诉 / 3

类型2020-2021学年新教材高考数学 第六章 数列 2 考点1 等差数列的基本运算练习(含解析)(选修2).docx

  • 上传人:a****
  • 文档编号:580075
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:3
  • 大小:18.95KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020-2021学年新教材高考数学 第六章 数列 考点1 等差数列的基本运算练习含解析选修2 2020 2021 学年 新教材 高考 数学 第六 考点 等差数列 基本 运算 练习 解析 选修
    资源描述:

    1、考点1 等差数列的基本运算(2018北京卷(理)设an是等差数列,且a13,a2a536,则an的通项公式为_【解析】方法一设公差为Da2a536,(a1d)(a14d)36,2a15d36.a13,d6,通项公式ana1(n1)d6n3(nN*)方法二设公差为d,a2a5a1a636,a13,a633,da6-a156.a13,通项公式an6n3(nN*)【答案】an6n3(nN*)(2018天津卷(理)设an是等比数列,公比大于0,其前n项和为Sn(nN*),bn是等差数列已知a11,a3a22,a4b3b5,a5b42b6.(1)求an和bn的通项公式;(2)设数列Sn的前n项和为Tn(

    2、nN*),求Tn;证明:nk=1Tk+bk+2bk(k1)(k2)2n+2n+22(nN*)【解析】(1)设等比数列an的公比为q.由a11,a3a22,可得q2q20.由q0,可得q2,故an2n1.设等差数列bn的公差为D由a4b3b5,可得b13d4.由a5b42b6,可得3b113d16,从而b11,d1,故bnn.所以数列an的通项公式为an2n1(nN*),数列bn的通项公式为bnn(nN*)(2)由(1)得Sn1-2n1+22n1,故Tnnk=1(2k1)nk=12kn2(1-2n)1+2n2n1n2(nN*)证明因为Tk+bk+2bk(k1)(k2)2k+1-k-2+k+2k(

    3、k1)(k2)k2k+1(k1)(k2)2k+2k+22k+1k+1,所以nk=1Tk+bk+2bk(k1)(k2)233-222244-2332n+2n+2-2n+1n+12n+2n+22(nN*)【答案】见解析(2018全国卷(理)记Sn为等差数列an的前n项和,若3S3S2S4,a12,则a5等于()A12 B10C10 D12【解析】设等差数列an的公差为d,由3S3S2S4,得33a1+33-12d2a122-12d4a144-12d,将a12代入上式,解得d3,故a5a1(51)d24(3)10.故选B【答案】B (2018江苏卷)设an是首项为a1,公差为d的等差数列,bn是首项

    4、为b1,公比为q的等比数列(1)设a10,b11,q2,若|anbn|b1对n1,2,3,4均成立,求d的取值范围;(2)若a1b10,mN*,q(1,m2,证明:存在dR,使得|anbn|b1对n2,3,m1均成立,并求d的取值范围(用b1,m,q表示)【解析】(1)由条件知an(n1)d,bn2n1,因为|anbn|b1对n1,2,3,4均成立,即|(n1)d2n1|1对n1,2,3,4均成立,即11,1d3,32d5,73d9,得73d52.因此,d的取值范围为73,52.(2)由条件知anb1(n1)d,bnb1qn1.若存在d,使得|anbn|b1(n2,3,m1)成立,即|b1(n

    5、1)db1qn1|b1(n2,3,m1),即当n2,3,m1时,d满足qn-1-2n-1b1dqn-1n-1b1.因为q(1,m2,则1qn1qm2,从而qn-1-2n-1b10,qn-1n-1b10对n2,3,m1均成立因此,取d0时,|anbn|b1对n2,3,m1均成立下面讨论数列qn-1-2n-1的最大值和数列qn-1n-1的最小值(n2,3,m1)令tn1,则1tm,qt-2tqt-1-2t-1tqt-qt-tqt-1+2t(t-1)tqt-qt-1-qt+2t(t-1),当1q21m时,有qtqm2,从而t(qtqt1)qt20.因此,当2nm1时,数列qn-1-2n-1单调递增,故数列qn-1-2n-1的最大值为qm-2m.设f(x)2x(1x),当x0时,f(x)(ln 21xln 2)2x0,所以f(x)单调递减,从而f(x)f(0)1.令tn1,则1tm,则qttqt-1t-1q(t-1)t21t1-1tf1t1,因此,当2nm1时,数列qn-1n-1单调递减,故数列qn-1n-1的最小值为qmm.因此,d的取值范围为b1qm-2m,b1qmm.【答案】见解析

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020-2021学年新教材高考数学 第六章 数列 2 考点1 等差数列的基本运算练习(含解析)(选修2).docx
    链接地址:https://www.ketangku.com/wenku/file-580075.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1