分享
分享赚钱 收藏 举报 版权申诉 / 6

类型2020-2021学年高中数学 第四讲 数学归纳法证明不等式测评练习(含解析)新人教A版选修4-5.docx

  • 上传人:a****
  • 文档编号:581985
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:6
  • 大小:28.06KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020-2021学年高中数学 第四讲 数学归纳法证明不等式测评练习含解析新人教A版选修4-5 2020 2021 学年 高中数学 第四 数学 归纳法 证明 不等式 测评 练习 解析 新人 选修
    资源描述:

    1、第四讲测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.用数学归纳法证明3nn3(n3,nN)第一步应验证()A.n=1B.n=2C.n=3D.n=4解析由n3,nN知,应验证n=3.答案C2.在用数学归纳法证明等式1+2+3+2n=2n2+n(nN+)的第(2)步中,假设当n=k时原等式成立,则在n=k+1时需要证明的等式为()A.1+2+3+2k+2(k+1)=2k2+k+2(k+1)2+(k+1)B.1+2+3+2k+2(k+1)=2(k+1)2+(k+1)C.1+2+3+2k+2k+1+2(k+1)=2k2+k+2(k+1)2+(k+1)D.

    2、1+2+3+2k+2k+1+2(k+1)=2(k+1)2+(k+1)解析用数学归纳法证明等式1+2+3+2n=2n2+n时,当n=1时左边所得的项是1+2=3,右边=212+1=3,命题成立.假设当n=k时命题成立,即1+2+3+2k=2k2+k.则当n=k+1时,左边为1+2+3+2k+2k+1+2(k+1),故从“kk+1”需增添的项是2k+1+2(k+1),因此1+2+3+2k+2k+1+2(k+1)=2(k+1)2+(k+1).答案D3.记等式1n+2(n-1)+3(n-2)+n1=n(n+1)(n+2)左边的式子为f(n),用数学归纳法证明该等式的第二步归纳递推时,即当n从k变为k+

    3、1时,等式左边的改变量f(k+1)-f(k)=()A.k+1B.1(k+1)+(k+1)1C.1+2+3+kD.1+2+3+k+(k+1)解析依题意,f(k)=1k+2(k-1)+3(k-2)+k1,则f(k+1)=1(k+1)+2k+3(k-1)+4(k-2)+k2+(k+1)1,f(k+1)-f(k)=1(k+1)-k+2k-(k-1)+3(k-1)-(k-2)+4(k-2)-(k-3)+k(2-1)+(k+1)1=1+2+3+k+(k+1).答案D4.用数学归纳法证明“n3+(n+1)3+(n+2)3(nN+)能被9整除”,要利用归纳假设证当n=k+1时的情况,只需展开()A.(k+3)

    4、3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3解析当n=k+1时,证明“(k+1)3+(k+2)3+(k+3)3能被9整除”,根据归纳假设,当n=k时,证明“k3+(k+1)3+(k+2)3能被9整除”,所以只需展开(k+3)3.答案A5.用数学归纳法证明2nn2(n5,nN+)成立时,第二步归纳假设的正确写法是()A.假设当n=k时命题成立B.假设当n=k(kN+)时命题成立C.假设当n=k(k5)时命题成立D.假设当n=k(k5)时命题成立解析由数学归纳法的步骤可知,选项C正确.答案C6.用数学归纳法证明“Sn=+1(nN+)”时,S1等于()A.B.C.D.解析当n=1

    5、时,S1=.答案D7.已知在数列an中,a1=1,a2=2,an+1=2an+an-1(nN+),用数学归纳法证明a4n能被4整除,假设a4k能被4整除,然后应该证明()A.a4k+1能被4整除B.a4k+2能被4整除C.a4k+3能被4整除D.a4k+4能被4整除解析由假设a4k能被4整除,则当n=k+1时,应该证明a4(k+1)=a4k+4能被4整除.答案D8.设01+nx(x-1,且x0,n1,nN+),可知当n1时,令x=,所以1+n,所以1+n,即(a+b)nan+nan-1b.当n=1时,M=N,故MN.答案MN三、解答题(本大题共6小题,共70分)17.(本小题满分10分)用数学

    6、归纳法证明:12-22+32-42+(2n-1)2-(2n)2=-n(2n+1)(nN+).证明(1)当n=1时,左边=12-22=-3,右边=-1(21+1)=-3,等式成立.(2)假设当n=k(kN+,k1)时等式成立,即12-22+32-42+(2k-1)2-(2k)2=-k(2k+1).当n=k+1时,12-22+32-42+(2k-1)2-(2k)2+(2k+1)2-2(k+1)2=-k(2k+1)+(2k+1)2-2(k+1)2=-2k2-5k-3=-(k+1)(2k+3)=-(k+1)2(k+1)+1,即当n=k+1时,等式成立.由(1)(2)可知,对任何nN+,等式成立.18.

    7、(本小题满分12分)求证:两个连续正整数的积能被2整除.证明设nN+,则要证明n(n+1)能被2整除.(1)当n=1时,1(1+1)=2,能被2整除,即命题成立.(2)假设n=k(k1)时命题成立,即k(k+1)能被2整除.当n=k+1时,(k+1)(k+1+1)=(k+1)(k+2)=k(k+1)+2(k+1),由归纳假设k(k+1)及2(k+1)都能被2整除,所以(k+1)(k+2)能被2整除,故当n=k+1时命题成立.由(1)(2)可知,命题对一切nN+都成立.19.(本小题满分12分)设函数fn(x)=x+x2+xn-2(nN,n2),当x-1,且x0时,证明:fn(x)0恒成立.(x

    8、+1)n=x0+x+x2+xn,m,nN+,且nm证明要证fn(x)0恒成立,因为x-1,且x0,所以只需证x+x2+xn1+nx,即证(1+x)n1+nx.(1)当n=2时,不等式成立.(2)假设当n=k(k2)时不等式成立,即(1+x)k1+kx.当n=k+1时,有(1+x)k+1=(1+x)k(1+x)(1+kx)(1+x)=1+(k+1)x+kx21+(k+1)x,即当n=k+1时不等式成立.由(1)(2)可知,对任意nN,n2,(1+x)n1+nx成立,即fn(x)0恒成立.20.(本小题满分12分)已知点的序列An(xn,0),nN+,其中x1=0,x2=a(a0),A3是线段A1

    9、A2的中点,A4是线段A2A3的中点,An是线段An-2An-1的中点,.(1)写出xn与xn-1,xn-2之间的关系式(n3);(2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列an的通项公式,并加以证明.解(1)当n3时,xn=.(2)a1=x2-x1=a,a2=x3-x2=-x2=-(x2-x1)=-a,a3=x4-x3=-x3=-(x3-x2)=-a.由此推测an=a(nN+).用数学归纳法证明:当n=1时,a1=x2-x1=a=a,通项公式成立.假设当n=k时,ak=a成立.当n=k+1时,ak+1=xk+2-xk+1=-xk+1=-(xk+1-xk)=-ak=-a=a

    10、,通项公式成立.由知,an=a(nN+)成立.21.导学号26394071(本小题满分12分)求证:tan tan 2+tan 2tan 3+tan(n-1)tan n=-n(n2,nN+).证明(1)当n=2时,左边=tantan2,右边=-2=-2=-2=tantan2=左边,等式成立.(2)假设当n=k(k2)时等式成立,即tantan2+tan2tan3+tan(k-1)tank=-k.当n=k+1时,tantan2+tan2tan3+tan(k-1)tank+tanktan(k+1)=-k+tanktan(k+1)=-k=1+tan(k+1)tan-k=tan(k+1)-tan-k=-(k+1),所以当n=k+1时等式成立.由(1)和(2)知,当n2,nN+时等式恒成立.22.导学号26394072(本小题满分12分)设xn是由x1=2,xn+1=(nN+)定义的数列,求证xn2.xn显然成立.下面用数学归纳法证明xn.(1)当n=1时,x1=2+1,不等式成立.(2)假设当n=k(k1)时不等式成立,即xk.当n=k+1时,xk+1=.由归纳假设,xk,.xk+1=.即xk+1.当n=k+1时,不等式xn成立.由(1)(2)可知,xn对一切nN+都成立.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020-2021学年高中数学 第四讲 数学归纳法证明不等式测评练习(含解析)新人教A版选修4-5.docx
    链接地址:https://www.ketangku.com/wenku/file-581985.html
    相关资源 更多
  • 人教版一年级上册数学期末测试卷精品【名师系列】.docx人教版一年级上册数学期末测试卷精品【名师系列】.docx
  • 人教版一年级上册数学期末测试卷精品【名师推荐】.docx人教版一年级上册数学期末测试卷精品【名师推荐】.docx
  • 人教版一年级上册数学期末测试卷精品【各地真题】.docx人教版一年级上册数学期末测试卷精品【各地真题】.docx
  • 人教版一年级上册数学期末测试卷精品【历年真题】.docx人教版一年级上册数学期末测试卷精品【历年真题】.docx
  • 人教版一年级上册数学期末测试卷精品【典型题】.docx人教版一年级上册数学期末测试卷精品【典型题】.docx
  • 人教版一年级上册数学期末测试卷精品【典优】.docx人教版一年级上册数学期末测试卷精品【典优】.docx
  • 人教版一年级上册数学期末测试卷精品【全国通用】.docx人教版一年级上册数学期末测试卷精品【全国通用】.docx
  • 人教版一年级上册数学期末测试卷精品【全优】.docx人教版一年级上册数学期末测试卷精品【全优】.docx
  • 人教版一年级上册数学期末测试卷精品【a卷】.docx人教版一年级上册数学期末测试卷精品【a卷】.docx
  • 人教版一年级上册数学期末测试卷精品.docx人教版一年级上册数学期末测试卷精品.docx
  • 人教版一年级上册数学期末测试卷精华版.docx人教版一年级上册数学期末测试卷精华版.docx
  • 人教版一年级上册数学期末测试卷答案免费下载.docx人教版一年级上册数学期末测试卷答案免费下载.docx
  • 人教版一年级上册数学期末测试卷答案免费.docx人教版一年级上册数学期末测试卷答案免费.docx
  • 人教版一年级上册数学期末测试卷答案下载.docx人教版一年级上册数学期末测试卷答案下载.docx
  • 人教版一年级上册数学期末测试卷汇编.docx人教版一年级上册数学期末测试卷汇编.docx
  • 人教版一年级上册数学期末测试卷汇总.docx人教版一年级上册数学期末测试卷汇总.docx
  • 人教版一年级上册数学期末测试卷有解析答案.docx人教版一年级上册数学期末测试卷有解析答案.docx
  • 人教版一年级上册数学期末测试卷有精品答案.docx人教版一年级上册数学期末测试卷有精品答案.docx
  • 人教版一年级上册数学期末测试卷有答案解析.docx人教版一年级上册数学期末测试卷有答案解析.docx
  • 人教版一年级上册数学期末测试卷有答案.docx人教版一年级上册数学期末测试卷有答案.docx
  • 人教版一年级上册数学期末测试卷有完整答案.docx人教版一年级上册数学期末测试卷有完整答案.docx
  • 人教版一年级上册数学期末测试卷最新.docx人教版一年级上册数学期末测试卷最新.docx
  • 人教版一年级上册数学期末测试卷新版.docx人教版一年级上册数学期末测试卷新版.docx
  • 人教版一年级上册数学期末测试卷推荐.docx人教版一年级上册数学期末测试卷推荐.docx
  • 人教版一年级上册数学期末测试卷必考题.docx人教版一年级上册数学期末测试卷必考题.docx
  • 人教版一年级上册数学期末测试卷必考.docx人教版一年级上册数学期末测试卷必考.docx
  • 人教版一年级上册数学期末测试卷往年题考.docx人教版一年级上册数学期末测试卷往年题考.docx
  • 人教版一年级上册数学期末测试卷带解析答案.docx人教版一年级上册数学期末测试卷带解析答案.docx
  • 人教版一年级上册数学期末测试卷带精品答案.docx人教版一年级上册数学期末测试卷带精品答案.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1