2020版高考数学大二轮培优文科通用版大题专项练(五) 函数与导数 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大二轮培优文科通用版大题专项练五函数与导数 WORD版含解析 2020 高考 数学 二轮 文科 通用版 专项 函数 导数 WORD 解析
- 资源描述:
-
1、大题专项练(五)函数与导数A组基础通关1.(2019安徽定远中学高三质检)已知函数f(x)=(x2-2x+2)ex-12ax2(aR).(1)当a=e时,求函数f(x)的单调区间;(2)证明:当a-2时,f(x)2.(1)解当a=e时,f(x)=(x2-2x+2)ex-12ex2,所以f(x)=x2ex-ex=x(xex-e),讨论:当x0时,xex-e0;当0x1时,由函数y=xex为增函数,有xex-e0,有f(x)1时,由函数y=xex为增函数,有xex-e0,有f(x)0.综上,函数f(x)的增区间为(-,0),(1,+),减区间为(0,1).(2)证明当a-2时,有-12a1,所以-
2、12ax2x2,所以f(x)(x2-2x+2)ex+x2.令g(x)=(x2-2x+2)ex+x2,则g(x)=x2ex+2x=x(xex+2).令h(x)=xex+2,有h(x)=(x+1)ex.令h(x)=0,得x=-1.分析知,函数h(x)的增区间为(-1,+),减区间为(-,-1).所以h(x)min=h(-1)=2-1e0.所以分析知,函数g(x)的增区间为(0,+),减区间为(-,0),所以g(x)min=g(0)=(02-20+2)e0+02=2,故当a-2时,f(x)2.2.在某次水下科研考查活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为
3、v(米/单位时间),每单位时间的用氧量为v103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考查活动中的总用氧量为y(升).(1)求y关于v的函数关系式;(2)若cv15(c0),求当下潜速度v取什么值时,总用氧量最少.解(1)由题意,得下潜用时60v(单位时间),用氧量为v103+160v=3v250+60v(升);水底作业时的用氧量为100.9=9(升);返回水面用时60v2=120v(单位时间),用氧量为120v1.5=180v(升),总用氧量y=3v250+240v+9(
4、v0).(2)y=3v25-240v2=3(v3-2 000)25v2,令y=0,得v=1032,当0v1032时,y1032时,y0,函数单调递增,当0c1032时,函数在(c,1032)上单调递减,在(1032,15)上单调递增,当v=1032时总用氧量最少,当c1032时,y在c,15上单调递增,当v=c时总用氧量最少.综上,若0ce+2-1e.(1)解由定义域为(0,1)(1,+),f(x)=1x-a(x-1)2=x2-(a+2)x+1x(x-1)2,设h(x)=x2-(a+2)x+1,要使y=f(x)在(e,+)上有极值,则x2-(a+2)x+1=0有两个不同的实根x1,x2,=(a
5、+2)2-40,a0或ae,0x11eex2,又h(0)=1,只需h1e0,即1e2-(a+2)1e+1e+1e-2,联立可得ae+1e-2.即实数a的取值范围是e+1e-2,+.(2)证明由(1)知,当x(1,x2)时,f(x)0,f(x)单调递增,f(x)在(1,+)上有最小值f(x2),即t(1,+),都有f(t)f(x2),又当x(0,x1)时,f(x)0,f(x)单调递增,当x(x1,1)时,f(x)e),设k(x)=ln x2+x-1x=2ln x+x-1x(xe),则k(x)=2x+1+1x20(xe),k(x)在(e,+)上单调递增,k(x)k(e)=2+e-1e,f(t)-f
6、(s)e+2-1e.4.(2019河南商丘模拟)已知函数f(x)=(2x+1)ln(2x+1)-a(2x+1)2-x(a0).(1)如图,设直线x=-12,y=-x将坐标平面分成,四个区域(不含边界),若函数y=f(x)的图象恰好位于其中一个区域内,判断其所在的区域并求对应的a的取值范围;(2)当a12时,求证:x1,x2(0,+)且x1x2,有f(x1)+f(x2)2fx1+x22.(1)解函数f(x)的定义域为-12,+,且当x=0时,f(0)=-a0.又直线y=-x恰好通过原点,函数y=f(x)的图象应位于区域内,于是可得f(x)-x,即(2x+1)ln(2x+1)-a(2x+1)2-x
7、0,aln(2x+1)2x+1.令h(x)=ln(2x+1)2x+1x-12,则h(x)=2-2ln(2x+1)(2x+1)2x-12.当x-12,e-12时,h(x)0,h(x)单调递增;当xe-12,+时,h(x)-12,当x0时,42x+112时,8a4,u(x)=42x+1-8a0时,f(x)为减函数,不妨设x2x10,令g(x)=f(x)+f(x1)-2fx+x12(xx1),可得g(x1)=0,g(x)=f(x)-fx+x12,xx+x12且f(x)是(0,+)上的减函数,g(x)x1时,g(x)为减函数,g(x2)g(x1)=0,即f(x1)+f(x2)g(x).(1)解易得g(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-593040.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
