2021-2022学年数学北师大版选修1-1训练:第二章 圆锥曲线与方程 测评 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022学年数学北师大版选修1-1训练:第二章圆锥曲线与方程 测评 WORD版含解析 2021 2022 学年 数学 北师大 选修 训练 第二 圆锥曲线 方程 WORD 解析
- 资源描述:
-
1、第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列曲线中离心率为62的是()A.x22-y24=1B.x24-y22=1C.x24-y26=1D.x24-y210=1解析:双曲线x24-y22=1的离心率e=4+22=62.答案:B2.平面上有两个定点A,B及动点P,命题甲:“|PA|-|PB|是定值”,命题乙:“点P的轨迹是以A,B为焦点的双曲线”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当|PA|-|PB|=|AB|时,点P的轨迹是一条射线,故甲乙,而乙甲,故选B.答案:B3.已知椭圆
2、与双曲线x23-y22=1有共同的焦点,且离心率为15,则椭圆的标准方程为()A.x220+y225=1B.x225+y220=1C.x225+y25=1D.x25+y225=1解析:双曲线x23-y22=1中,a12=3,b12=2,则c1=a12+b12=5,故焦点坐标为(-5,0),(5,0),故所求椭圆x2a2+y2b2=1(ab0)的c=5,又椭圆的离心率e=ca=15,则a=5,a2=25,b2=a2-c2=20,故椭圆的标准方程为x225+y220=1.答案:B4.已知双曲线C:x2a2-y2b2=1的焦距为10,点P(2,1)在双曲线C的渐近线上,则双曲线C的方程为()A.x2
3、20-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:根据双曲线标准方程中系数之间的关系求解.x2a2-y2b2=1的焦距为10,c=5=a2+b2.又双曲线渐近线方程为y=bax,且P(2,1)在渐近线上,2ba=1,即a=2b.由解得a=25,b=5,故选A.答案:A5.(2017全国高考)已知F是双曲线C:x2-y23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为()A.13B.12C.23D.32解析:由c2=a2+b2=4,得c=2,所以点F的坐标为(2,0).将x=2代入x2-y23=1,得y=3,
4、所以|PF|=3.又点A的坐标是(1,3),故APF的面积为123(2-1)=32,故选D.答案:D6.已知双曲线x2a2-y2b2=1(a0,b0)的一条渐近线方程是y=3x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.x236-y2108=1B.x29-y227=1C.x2108-y236=1D.x227-y29=1解析:抛物线y2=24x的准线方程为x=-6,故双曲线中c=6.由双曲线x2a2-y2b2=1的一条渐近线方程为y=3x,知ba=3,且c2=a2+b2.由解得a2=9,b2=27.故双曲线的方程为x29-y227=1,故选B.答案:B7.P是长轴在x轴上
5、的椭圆x2a2+y2b2=1上的点,F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|PF2|的最大值与最小值之差一定是()A.1B.a2C.b2D.c2解析:由椭圆的几何性质得|PF1|a-c,a+c,|PF1|+|PF2|=2a,所以|PF1|PF2|PF1|+|PF2|22=a2,当且仅当|PF1|=|PF2|时取等号.|PF1|PF2|=|PF1|(2a-|PF1|)=-|PF1|2+2a|PF1|=-(|PF1|-a)2+a2-c2+a2=b2,所以|PF1|PF2|的最大值与最小值之差为a2-b2=c2.答案:D8.若直线y=kx-2与抛物线y2=8x交于A,B两个不同
6、的点,且AB的中点的横坐标为2,则k等于()A.2或-1B.-1C.2D.15解析:由y=kx-2,y2=8x消去y,得k2x2-4(k+2)x+4=0,故=-4(k+2)2-4k24=64(1+k)0,解得k-1,由x1+x2=4(k+2)k2=4,解得k=-1或k=2,又k-1,故k=2.答案:C9.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.54B.5C.52D.5解析:双曲线x2a2-y2b2=1的一条渐近线方程为y=bax,由方程组y=bax,y=x2+1消去y,得x2-bax+1=0有唯一解,所以=ba2-4=0,所以ba
7、=2,所以e=ca=a2+b2a=1+ba2=5,故选D.答案:D10.在抛物线y2=8x中,以(1,-1)为中点的弦的方程是()A.x-4y-3=0B.x+4y+3=0C.4x+y-3=0D.4x+y+3=0解析:设弦的两端点坐标分别为(x1,y1),(x2,y2)(x1x2),则y12=8x1,y22=8x2,两式相减得(y1-y2)(y1+y2)=8(x1-x2),又y1+y2=-2,y1-y2x1-x2=-4,弦所在直线的斜率为-4,又过点(1,-1),所求直线方程为4x+y-3=0.答案:C11.如图,南北方向的公路L,A地在公路正东2 km处,B地在A北偏东60方向23 km处,河
8、流沿岸曲线PQ上任意一点到公路L和到A地距离相等.现要在曲线PQ上某处建一座码头,向A,B两地运货物,经测算,从M到A,B修建公路的费用都为a万元/km,那么,修建这两条公路的总费用最低是()A.(2+3)a万元B.(23+1)a万元C.5a万元D.6a万元解析:本题主要考查抛物线的实际应用.依题意知曲线PQ是以A为焦点、L为准线的抛物线,根据抛物线的定义知,欲求从M到A,B修建公路的费用最低,只需求出B到直线L的距离即可.B地在A地北偏东60方向23km处,B到点A的水平距离为3km,B到直线L的距离为3+2=5(km),那么,修建这两条公路的总费用最低为5a万元,故选C.答案:C12.(2
9、017全国高考)设A,B是椭圆C:x23+y2m=1长轴的两个端点.若C上存在点M满足AMB=120,则m的取值范围是()A.(0,19,+)B.(0,39,+)C.(0,14,+)D.(0,34,+)解析:由题意,可知当点M为短轴的端点时,AMB最大.当0m3时,椭圆C的焦点在x轴上,要使椭圆C上存在点M满足AMB=120,则abtan60=3,即3m3,解得03时,椭圆C的焦点在y轴上,要使椭圆C上存在点M满足AMB=120,则abtan60=3,即m33,解得m9,综上m的取值范围为(0,19,+),故选A.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.(2017北京高
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-595509.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
