2021高考数学大一轮复习考点规范练50双曲线理新人教A版202006100172.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 考点 规范 50 双曲线 新人 202006100172
- 资源描述:
-
1、考点规范练50双曲线考点规范练B册第35页基础巩固1.若双曲线y2a2-x29=1(a0)的一条渐近线与直线y=13x垂直,则此双曲线的实轴长为()A.2B.4C.18D.36答案:C解析:双曲线的一条渐近线的方程为y=-a3x,所以-a313=-1,解得a=9,所以双曲线的实轴长为2a=18,故选C.2.(2019浙江,2)渐近线方程为xy=0的双曲线的离心率是()A.22B.1C.2D.2答案:C解析:因为双曲线的渐近线方程为xy=0,所以a=b=1.所以c=a2+b2=2,双曲线的离心率e=ca=2.3.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的
2、两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1答案:A解析:由题意知椭圆C1的焦点坐标为F1(-5,0),F2(5,0),设曲线C2上的一点P,则|PF1|-|PF2|=8.由双曲线的定义知a=4,b=3.故曲线C2的标准方程为x242-y232=1.4.双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F2,过F1作x轴的垂线交双曲线于A,B两点,若AF2B3,则双曲线离心率的取值范围是()A.(1,3)B.(1,6)C.(1,23)D.(3,33)答案
3、:A解析:由题意,将x=-c代入双曲线的方程,得y2=b2c2a2-1=b4a2,|AB|=2b2a.过焦点F1且垂直于x轴的弦为AB,AF2B3,AF2F16,tanAF2F1=b2a2c1.c2-a22ac33,12e-12e0,b0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是()A.y=33xB.y=3xC.y=217xD.y=213x答案:B解析:F1,F2,P(0,2b)是正三角形的三个顶点,设F1(-c,0),F2(c,0),则|F1P|=c2+4b2,c2+4b2=2c.c2+4b2=4c2,c2+4(c2-a2)=4c2.c2=4a2,
4、即c=2a,b=c2-a2=3a.双曲线的渐近线方程为y=bax,即为y=3x.故选B.7.在平面直角坐标系xOy中,若双曲线x2a2-y2b2=1(a0,b0)的右焦点F(c,0)到一条渐近线的距离为32c,则其离心率的值是.答案:2解析:双曲线的渐近线方程为y=bax,即bxay=0.所以双曲线的焦点F(c,0)到渐近线的距离为|bc0|a2+b2=bcc=b,解得b=32c,因此a2=c2-b2=c2-34c2=14c2,a=12c,e=2.8.双曲线C:x24-y2=1的左、右焦点分别为F1,F2,过F1的直线交双曲线左支于A,B两点,则|AF2|+|BF2|的最小值为.答案:9解析:
5、由双曲线的定义,得|AF2|+|BF2|=|AF1|+2a+|BF1|+2a=|AB|+4a2b2a+4a=212+8=9.9.设A,B分别为双曲线x2a2-y2b2=1(a0,b0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为3.(1)求双曲线的方程;(2)已知直线y=33x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使OM+ON=tOD,求t的值及点D的坐标.解:(1)由题意知a=23,故可得一条渐近线方程为y=b23x,即bx-23y=0,所以|bc|b2+12=3.所以b2=3,所以双曲线的方程为x212-y23=1.(2)设M(x1,y1),N(x2,y
6、2),D(x0,y0),则x1+x2=tx0,y1+y2=ty0.将直线方程代入双曲线方程得x2-163x+84=0,则x1+x2=163,y1+y2=12.故x0y0=433,x0212-y023=1,解得x0=43,y0=3.由OM+ON=tOD,得(163,12)=(43t,3t),故t=4,点D的坐标为(43,3).10.已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=22,记动点P的轨迹为W.(1)求W的方程;(2)若A和B是W上的不同两点,O是坐标原点,求OAOB的最小值.解:(1)由|PM|-|PN|=22知动点P的轨迹是以M,N为焦点的双曲线的右支,实半轴
7、长a=2.又焦距2c=4,所以虚半轴长b=c2-a2=2.所以W的方程为x22-y22=1(x2).(2)设A,B的坐标分别为(x1,y1),(x2,y2).当ABx轴时,x1=x2,y1=-y2,从而OAOB=x1x2+y1y2=x12-y12=2.当AB与x轴不垂直时,设直线AB的方程为y=kx+m(k1),与W的方程联立,消去y得(1-k2)x2-2kmx-m2-2=0,则x1+x2=2km1-k2,x1x2=m2+2k2-1,所以OAOB=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)(m2+2)k2-1+2k2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-631626.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
(黄孝咸专版)2022七年级英语下册 Unit 1 Can you play the guitar综合测试课件(新版)人教新目标版.ppt
