2022-2023学年京改版八年级数学上册第十一章实数和二次根式专项测试练习题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 改版 八年 级数 上册 第十一 实数 二次 根式 专项 测试 练习题
- 资源描述:
-
1、八年级数学上册第十一章实数和二次根式专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若有意义,则(n)2的平方根是()ABCD2、计算=()ABCD3、若,则x的值等于()A4BC2D4、有下列说
2、法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数都是无理数;无理数是含有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个5、设,则()ABCD6、在实数:3.14159,1.010 010 001,中,无理数有()A1个B2个C3个D4个7、若代数式在实数范围内有意义,则x的取值范围为()Ax0Bx0Cx0Dx0且x18、下列计算正确的是()ABCD9、下列运算正确的是()ABCD10、下列说法中,正确的是()A无理数包括正无理数、零和负无理数B无限小数都是无理数C正实数包括正有理数和正无理数D实数可以分为正实数和负实数两类第卷(非选择
3、题 70分)二、填空题(5小题,每小题4分,共计20分)1、若单项式与是同类项,则的值是_2、一个正数的两个平方根的和是_,商是_3、计算:=_4、一个正数的平方根分别是和,则_5、若二次根式有意义,则x的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、计算:2、计算:(1)(2) (3)(4)(5)(6)3、实数a在数轴上的对应点A的位置如图所示,b|a|2a|(1)求b的值;(2)已知b2的小数部分是m,8b的小数部分是n,求2m2n1的平方根4、计算5、计算(1) ;(2)-参考答案-一、单选题1、D【解析】【详解】试题解析:有意义, 解得: 的平方根是: 故选D2、C【解
4、析】【分析】根据二次根式的混合运算和根式的性质即可解题.【详解】解: ,故选C.【考点】本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.3、C【解析】【分析】先化简、合并等号左边的二次根式,再将系数化为,继而两边平方,进一步求解可得【详解】解:原方程化为,合并,得,即,故选:C【考点】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并4、A【解析】【分析】根据无理数、分数的概念判断【详解】解:无限不循环小数是无理数,错误是有理数,错误是有理数,错误也是无理数,不含根号,错误是一个无理数,不是分数,错误故选:【考点】本题考查实
5、数的概念,掌握无理数是无限不循环小数是求解本题的关键5、C【解析】【分析】先估计的范围,再得出a的范围即可.【详解】解:479,即,故选C.【考点】本题考查了无理数的估算,解题的关键是掌握无理数的估算方法.6、B【解析】【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:,在实数:3.14159,1.010010001,中,无理数有1.010010001,共2个故选:B【考点】本题主要考查了无理数的定义,掌握无理数的定义是解题的关键,其中初中范围内学习的无理
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-634269.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
