2022-2023学年人教版九年级数学上册第二十五章概率初步定向攻克练习题(含答案解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二 十五 概率 初步 定向 攻克 练习题 答案 解析
- 资源描述:
-
1、人教版九年级数学上册第二十五章概率初步定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有个,若随机地从袋子中摸出一个球
2、,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则的值为()A3B4C5D62、七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()ABCD3、小丽准备通过爱心热线捐款,她只记得号码的前 位,后三位由 , 这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是()ABCD4、某林业局将一种树苗移植成活的情况绘制成如下统计图,由此可估计这种树苗移植成活的概率约为()A0.95B0.90C0.8
3、5D0.805、两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A抛一枚硬币,正面朝上的概率B掷一枚正六面体的骰子,出现点的概率C转动如图所示的转盘,转到数字为奇数的概率D从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率6、箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()ABCD7、小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停
4、电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )ABCD8、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A抛一枚硬币,出现正面B一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5D从一个装有2个白球和1个红球的袋子中任取一球,取到红球9、在一个不透明的口袋中有四
5、个完全相同的小球,把它们分别标号为1,2,3,4若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()ABCD10、下列事件中,属于必然事件的是()A13人中至少有2个人生日在同月B任意掷一枚质地均匀的硬币,落地后正面朝上C从一副扑克牌中随机抽取一张,抽到的是红桃AD以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概
6、率是_2、某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数501003004006001000发芽频数4796284380571948估计这批青稞发芽的概率是_(结果保留到0.01)3、从-3,-2,5和7这四个数中任取出两个数相乘,积为正数的概率为_4、掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率是_5、某同学投掷一枚硬币,如果连续次都是正面朝上,则他第次抛掷硬币的结果是正面朝上的概率是_三、解答题(5小题,每小题10分,共计50分)1、第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球这些球除颜色外无其他差别,分别从每个盒中随
7、机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率2、某电视台一档综艺节目中,要求嘉宾参加知识竞答,竞答题共10道每一题有三个选项,且只有一个选项正确,规定每题答对得2分,答错扣1分,不答得0分,若10道题全部答对则另外再奖励2分某位嘉宾已经答对了8道题,剩下2道题他都不确定哪个选项(1)若这位嘉宾随机选择一个选项,求他剩下的2道题一对一错的概率;(2)这位嘉宾对剩下2题可以都不答,或只随机答1题,或随机答2题,请你从统计与概率的角度分析,采用哪种做法解答剩下2道题才能总得分更高?3、某校近期对七、八年级学生进行了“新型冠状病毒防治知识”线上测试,为了解他们的掌握情况,从七、八
8、年级各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息:a、七年级的频数分布直方图如图(数据分为5组:50x60,60x70,70x80,80x90, 90x100)b、七年级学生成绩在80x90的这一组是:80;80.5;81;82;82;83;83.5;84;84;85;86;86.5;87;88; 89;89c、七、八年级学生成绩的平均数、中位数、众数如表: 年级平均数中位数众数七年级85.3m90八年级87.28591根据以上信息,回答下列问题:(1)表中m的值为 ;(2)在随机抽样的学生中,七年级小张同学与八年级小李同学的成绩都为84分,
9、请问谁在自己的年级排名更靠前?请说明理由;(3)七年级学生中,有2位女同学和1位男同学获得满分,这3位同学被授予“疫情防控标兵”称号,并安排在领奖台上随意排成一排拍照留念,求两名女生不相邻的概率4、为了解某校九年级学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行统计,结果如下表,并绘制了如下尚不完整的统计图,已知,两组发言的人数比为:,请结合图表中相关数据回答下列问题:组别课堂发言次数(1)本次抽样的学生人数为_;(2)补全条形统计图;(3)该年级共有学生人,请估计这天全年级发言次数不少于的人数;(4)已知组发言的学生中有位女生,组发言的学生中有位男生,现从组与组中分
10、别抽一位学生写报告,请用树状图或列表法,求所抽到的两位学生恰好是一男一女的概率5、2022年2月4日,北京冬奥会正式拉开帷幕,小明同学非常喜欢冰球、短道速滑、自由式滑雪、冰壶、花样滑冰这五个项目,他也想知道大家对这五个项目的喜爱程度,于是他对所在小区的居民做了一次随机调查统计,让每个人在这五个项目中选一项最喜欢的,并根据这个统计结果制作了如下两幅不完整的统计图:(其中A冰球、B短道速滑、C自由式滑雪、D冰壶、E花样滑冰)(1)该小区居民在这次随机调查中被调查到的人数是_人,_,并补全条形统计图;(2)若该小区有居民1200人,试估计喜欢短道速滑这个项目的居民约有多少人?(3)由于小明同学能够观
11、看比赛的时间有限,所以他只能从这五个项目中随机选两个项目观看,请问他同时选到B,C这两个项目的概率是多少?(要求画树状图或列表求概率)-参考答案-一、单选题1、A【解析】【分析】根据题意可得,然后进行求解即可【详解】解:由题意得:,解得:,经检验是原方程的解;故选A【考点】本题主要考查分式方程的解法及概率,熟练掌握分式方程的解法及概率是解题的关键2、C【解析】【分析】首先设正方形的面积,再表示出阴影部分面积,然后可得概率【详解】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:,故选C【考点】此题主要考查了概率,关键是表示图形的面积和阴影部分面
12、积3、D【解析】【分析】首先根据题意可得:可能的结果有:502,520,052,025,250,205;然后利用概率公式求解即可求得答案【详解】解:她只记得号码的前5位,后三位由5,0,2,这三个数字组成,可能的结果有:502,520,052,025,250,205;他第一次就拨通电话的概率是:故选:D【考点】此题考查了列举法求概率的知识注意概率所求情况数与总情况数之比4、B【解析】【分析】由图可知,成活概率在0.9上下波动,故可估计这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9【详解】解:这种树苗成活的频率稳定在0.9,成活的概率估计值约是0.90故选:B【考点】本题考查了利用频率
13、估计概率由于树苗数量巨大,故其成活的概率与频率可认为近似相等用到的知识点为:总体数目=部分数目相应频率部分的具体数目=总体数目相应频率5、D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意故选:D【考点】此题考查了利用频率估计概率,属于常见题型
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635688.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
小学英语情境教学案例.pdf
