2022-2023学年人教版九年级数学上册第二十四章圆同步练习试题(含详细解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二 十四 同步 练习 试题 详细 解析
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O
2、外D点A与O的位置关系无法确定2、一个等腰直角三角形的内切圆与外接圆的半径之比为()ABCD3、如图1,一个扇形纸片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D4、如图,已知中,如果以点为圆心的圆与斜边有公共点,那么的半径的取值范围是()ABCD5、已知平面内有和点,若半径为,线段,则直线与的位置关系为()A相离B相交C相切D相交或相切6、如图,AB是O的直径,BC与O相切于点B,AC交O于点D,若ACB=50,则BOD等于()A40B50C60D807、下列图形为正多边形的是()ABCD8、
3、如图物体由两个圆锥组成,其主视图中,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A2BCD9、如图,O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是()A6.5B5.5C3.5D2.510、如图,AB是O的弦,等边三角形OCD的边CD与O相切于点P,连接OA,OB,OP,AD若COD+AOB180, AB6,则AD的长是()A6B3C2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A、B、C、D为一个正多边形的相邻四个顶点,O为正多边形的中心,若ADB=12,则这个正多边形的边数为_2、如图,O的直径AB26,弦
4、CDAB,垂足为E,OE:BE5:8,则CD的长为_3、如图,四边形ABCD内接于O,A=125,则C的度数为_4、如图,在O中,CD是直径,弦ABCD,垂足为E,连接BC,若AB=cm,则圆O的半径为_cm5、如图,在一边长为的正六边形中,分别以点A,D为圆心,长为半径,作扇形,扇形,则图中阴影部分的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB是O的直径,C,D是O上的点,OCBD,交AD于点E,连结BC(1)求证:AE=ED;(2)若AB=10,CBD=36,求的长2、如图,AB、CD是O中两条互相垂直的弦,垂足为点E,且AECE,点F是BC的中点,
5、延长FE交AD于点G,已知AE1,BE3,OE(1)求证:AEDCEB;(2)求证:FGAD;(3)若一条直线l到圆心O的距离d,试判断直线l是否是圆O的切线,并说明理由3、如图,AB为O的直径,C、D为O上的两个点,连接AD,过点D作DEAC交AC的延长线于点E(1)求证:DE是O的切线(2)若直径AB6,求AD的长4、如图,正方形ABCD的外接圆为O,点P在劣弧 CD上(不与C点重合)(1)求BPC的度数;(2)若O的半径为8,求正方形ABCD的边长5、如图,在中,(1)请作出经过A、B两点的圆,且该圆的圆心O落在线段AC上(尺规作图,保留作图痕迹,不写做法);(2)在(1)的条件下,已知
6、,将线段AB绕点A逆时针旋转后与O交于点E试证明:B、C、E三点共线-参考答案-一、单选题1、A【解析】【分析】先求出点A到圆心O的距离,再根据点与圆的位置依据判断可得【详解】解:点A(4,3)到圆心O的距离,OAr5,点A在O上,故选:A【考点】本题考查了对点与圆的位置关系的判断关键要记住若半径为,点到圆心的距离为,则有:当时,点在圆外;当时,点在圆上,当时,点在圆内,也考查了勾股定理的应用2、D【解析】【分析】设等腰直角三角形的直角边是1,则其斜边是根据直角三角形的内切圆半径是两条直角边的和与斜边的差的一半,得其内切圆半径是;其外接圆半径是斜边的一半,得其外接圆半径是所以它们的比为=【详解
7、】解:设等腰直角三角形的直角边是1,则其斜边是;内切圆半径是,外接圆半径是,所以它们的比为=故选:D【考点】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半3、A【解析】【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CDO=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解
8、】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CDO30,COD60,由弧AD、线段AC和CD所围成的图形的面积S扇形AODSCOD6,阴影部分的面积为6.故选A【考点】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住扇形面积的计算公式也考查了折叠性质4、C【解析】【分析】作CDAB于D,根据勾股定理计算出AB=13,再利用面积法计算出然后根据直线与圆的位置关系得到当时,以C为圆心、r为半径作的圆与斜边AB有公共点【详解】解:作CDAB于D,如图,C=90,AC=3,BC=4,以C为圆心、r为半径作的圆
9、与斜边AB有公共点时,r的取值范围为故选:C【考点】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d:直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr5、D【解析】【分析】根据点与圆的位置关系的判定方法进行判断【详解】解:O的半径为2cm,线段OA=3cm,线段OB=2cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,点A在O外点B在O上,直线AB与O的位置关系为相交或相切,故选:D【考点】本题考查了直线与圆的位置关系,正确的理解题意是解题的关键6、D【解析】【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635827.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
