2022-2023学年北师大版八年级数学上册第一章勾股定理专项攻克试题(解析卷).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 北师大 八年 级数 上册 第一章 勾股定理 专项 攻克 试题 解析
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持
2、梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为()A3.2mB3.5mC3.9mD4m2、勾股定理是人类最伟大的科学发现之一,在我国古算书周髀算经中早有记载如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A直角三角形的面积B最大正方形的面积C较小两个正方形重叠部分的面积D最大正方形与直角三角形的面积和3、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D4、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽
3、弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A3B4C5D65、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D456、如图,在水塔O的东北方向24m处有一抽水站A,在水塔的 东南方向18m处有一建筑工地B,在AB间建一条直水管,则 水管AB的长为()A40mB45mC30mD35m7、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形8、如图,三角形纸片ABC,点D是BC边上一点,连接AD
4、,把ABD沿着AD翻折,得到AED,DE与AC交于点G,连接BE交AD于点F.若DGGE,AF6,BF4,ADG的面积为8,则点F到BC的距离为()ABCD9、已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A5B25CD5或10、已知直角三角形纸片的两条直角边长分别为m和n(mn),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )Am2+2mn+n2=0Bm22mn+n2=0Cm2+2mnn2=0Dm22mnn2=0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在一次综合实践活动中,小明将一张边长为10cm的正方
5、形纸片ABCD,沿着BC边上一点E与点A的连线折叠,点B是点B的对应点,延长EB交DC于点G,BGcm,则ECG的面积为_cm22、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈10尺)意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长_尺3、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小
6、锐角的正切为,那么大正方形的面积是_4、把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点在同一直线上若,则_5、在RtABC中,C90,AC9,AB15,则点C到AB的距离是_三、解答题(5小题,每小题10分,共计50分)1、阅读理解:课堂上学习了勾股定理后,知道“勾三、股四、弦五”王老师给出一组数让学生观察:3,4,5;5,12,13;7,24,25;9,40,41;学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决(1)请你根据上述的规律写出下一组勾股数:11,_,_;(2)若第
7、一个数用字母(为奇数,且)表示,则后两个数用含的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律:,于是他很快表示出了第二个数为,则用含的代数式表示第三个数为_(3)用所学知识说明(2)中用表示的三个数是勾股数2、如图,已知半径为5的M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分OAM,AOCO6(1)判断M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式3、如图所示,在中,为边上的中点.(1)求、的长度;(2)将折叠,使与重合,得折痕;求、的长度.4、湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测
8、量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得米,米求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离5、如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论-参考答案-一、单选题1、C【解析】【分析】如图,在RtACB中,先根据勾股定理求出AB,然后在RtABD中根据勾股定理求出BD,进而可得答案【详解】解:如图,在RtACB中,ACB90,BC1.5米,AC2米,AB21.52+226.25,AB=2.5米,在RtABD中,A
9、DB90,AD0.7米,BD2+AD2AB2,BD2+0.726.25,BD25.76,BD0,BD2.4米,CDBC+BD1.5+2.43.9米故选:C【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键2、C【解析】【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+
10、b-c),知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c23、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,CH=,即
11、:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键4、C【解析】【详解】解:如图所示,(a+b)2=21a2+2ab+b2=21,大正方形的面积为13,即:a2+b2=13,2ab=2113=8,小正方形的面积为138=5故选C5、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2
12、AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握6、C【解析】【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可【详解】解:OA是东北方向,OB是东南方向,AOB=90,又OA=24m,OB=18m,30m故选:C【考点】本题考查的知识点是解直角三角形的应用,正确运用勾股定理,善于观察题目的信息是解题以及学好数学
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-637499.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
