分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022-2023学年北师大版八年级数学上册第一章勾股定理专题攻克试题(解析卷).docx

  • 上传人:a****
  • 文档编号:637542
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:24
  • 大小:1.20MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 北师大 八年 级数 上册 第一章 勾股定理 专题 攻克 试题 解析
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直

    2、角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D62、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()A0h11B11h12Ch12D0h123、如图,在矩形ABCD中,将ABD沿对角线BD对折,得到EBD,DE与BC交于F,则()AB3CD64、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为()A3.2mB3.5mC3.9mD4m5、如图,在22的正

    3、方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是()ABCD6、如图,将ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么ABC中BC边上的高是()ABCD7、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D8、如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若FPH90,PF8,PH6,则长方形ABCD的边BC的长为( ) A20B22C24D309、如图,在中,为边上一动点,于,于,为中点,则的最小值为().ABCD10、如图,中,将折叠

    4、,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为().ABC3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,C90,AB10,AC8,则BC的长为_2、如图,已知中,动点M满足,将线段绕点C顺时针旋转得到线段,连接,则的最小值为_3、如图,在一次综合实践活动中,小明将一张边长为的正方形纸片,沿着边上一点与点的连线折叠,点是点的对应点,延长交于点,经测量,则的面积为_4、如图,已知四边形中,则四边形的面积等于_.5、在RtABC中,C90,AC9,AB15,则点C到AB的距离是_三、解答题(5小题,每小题10分,共计50分)1、细心观察图形,认

    5、真分析各式,然后解答问题OA22=,;OA32=12+,;OA42=12+,(1)请用含有n(n是正整数)的等式表示上述变规律:OAn2=_;Sn=_(2)求出OA10的长(3)若一个三角形的面积是,计算说明他是第几个三角形?(4)求出S12+S22+S32+S102的值2、一个25米长的梯子,斜靠在一竖直的墙上,这时的距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?3、勾股定理的证明方法是多样的,其中“面积法”是常用的方法小丽发现:当四个全等的直角三角形如图摆放时,可以用“面积法”来证明勾股定理请写出勾股定理的内容,并利用给定的图形进行证明4、如图,将一个长方形纸片AB

    6、CD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积5、阅读与思考:请阅读下列材料,并完成相应的任务若直角三角形的三边的长都是正整数,则三边的长为“勾股数”构造勾股数,就是要寻找3个正整数,使它们满足“其中两个数的平方和(或平方差)等于第三个数的平方”通过观察常见勾股数“3,4,5”;“5,12,13”;“7,24,25”猜想当一组勾股数中(),最小数为奇数时,另两个正整数和满足比且,解得,任务:(1)请证明猜想成立,即证明,构成勾股数(2)若一组勾股数中,最小数为9,则另两个数分别是_和_-参考答案-一、单选题1、D【解析】【分析】分三种情况

    7、讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键2、B【解析】【分析】根据题意画出图形,先找出h的值为最大和最小时筷子的位置,再根据勾股定理解答即可【详解】解:当筷子与杯底垂直时h最大,h最大241212cm当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB13cm,h241311cmh的取值范围是11cmh12cm故选:B【考点

    8、】本题考查了勾股定理的实际应用问题,解答此题的关键是根据题意画出图形找出何时h有最大及最小值,同时注意勾股定理的灵活运用,有一定难度3、A【解析】【分析】根据折叠的性质,可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值【详解】解:,AD=,由折叠可知,AB=BE=6,AD=ED=,BDF=DBFBF=DF=-EF,在Rt中,由勾股定理得:,解得:EF=,故选:A【考点】本题主要考查的是勾股定理的应用,灵活利用折叠进行发掘条件是解题的关键4、C【解析】【分析】如图,在RtACB中,先根据勾股定理求出AB,然后在RtABD中根据勾股定理求出BD,进而可得答案【详解】解:如图,在

    9、RtACB中,ACB90,BC1.5米,AC2米,AB21.52+226.25,AB=2.5米,在RtABD中,ADB90,AD0.7米,BD2+AD2AB2,BD2+0.726.25,BD25.76,BD0,BD2.4米,CDBC+BD1.5+2.43.9米故选:C【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键5、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可【详解】解:如图,均可与点和组成直角三角形,故选:C【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)6

    10、、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出ABC是直角三角形,最后设BC边上的高为h,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:, ,即ABC是直角三角形,设BC边上的高为h,则,.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.7、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,BC4AB=5,CADBAD,AEAE,AEFA

    11、EG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,CH=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键8、C【解析】【详解】由折叠得: 在Rt 中,FPH90,PF8,PH6,则 故BC=BF+FH+HC=6+8+10=24.故选C.9、D【解析】【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出APBC时,AP的值最小,即A

    12、M的值最小,根据面积关系建立等式求出其解即可【详解】解:如图,连接AP,AB=3,AC=4,BC=5,EAF=90,PEAB于E,PFAC于F,四边形AEPF是矩形,EF,AP互相平分且EF=AP,EF,AP的交点就是M点当AP的值最小时,AM的值就最小,当APBC时,AP的值最小,即AM的值最小APBC=ABAC,APBC=ABAC,AB=3,AC=4,BC=5,5AP=34,AP=,AM=故选:D【考点】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP的最小值10、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求

    13、DN的长,即可得出结果【详解】解:D是AB中点,AB=4,AD=BD=2,将ABC折叠,使点C与AB的中点D重合,DN=CN,BN=BC-CN=6-DN,在RtDBN中,DN2=BN2+DB2,DN2=(6-DN)2+4,DN=,CN=DN=,故选:D【考点】本题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键二、填空题1、6【解析】【分析】根据勾股定理求解即可【详解】RtABC中,C=90,AB=10,AC=8,BC=6故答案为:6【考点】本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键2、#【解析】【分析】证明AM

    14、CBNC,可得,再根据三角形三边关系得出当点N落在线段AB上时,最小,求出最小值即可【详解】解:线段绕点C顺时针旋转得到线段,AMCBNC,的最小值为;故答案为:【考点】本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出,根据三角形三边关系取得最小值3、#【解析】【分析】根据题意,进而求得,勾股定理求得,即可求得的面积【详解】解:折叠,四边形是正方形中故答案为:【考点】本题考查了折叠的性质,勾股定理,掌握勾股定理是解题的关键4、36【解析】【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出ACD的形状,最后利用三角形的面积公式求解即可【详解】连

    15、接AC,如下图所示:ABC=90,AB=3,BC=4,AC=,在ACD中,AC2+AD2=25+144=169=CD2,ACD是直角三角形,S四边形ABCD=ABBC+ACAD=34+512=36.【考点】本题考查了勾股定理及勾股定理的逆定理,正确作出辅助线是解题的关键.5、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在RtABC中,C90,则有AC2+BC2=AB2AC=9,BC=12,AB=在RtABC中,C=90,则有AC2+BC2=AB2,AC=9,AB=15,BC=12,SABC=ACBC=ABh,h=故答案为【考点】

    16、本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键三、解答题1、(1)OAn2n;Sn;(2)OA10;(3)说明他是第20个三角形;(4)【解析】【分析】(1)利用已知可得OAn2,注意观察数据的变化,(2)结合(1)中规律即可求出OA102的值即可求出,(3)若一个三角形的面积是,利用前面公式可以得到它是第几个三角形,(4)根据题意列出式子即可求出【详解】(1)结合已知数据,可得:OAn2n;Sn;(2)OAn2n,OA10;(3)若一个三角形的面积是,根据:Sn,2,说明他是第20个三角形,(4)S12+S22+S32+S102,故答案

    17、为(1)OAn2n;Sn;(2)OA10;(3)说明他是第20个三角形;(4)【考点】本题考查规律型:图形的变化类,勾股定理的应用.2、8米【解析】【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB的长度,进而求出BB的长度即可【详解】解:如图,依题意可知AB25(米),AO24(米),O90, BO2AB2AO2252-242, BO7(米),移动后,20(米), (米), (米)答:梯子底端B外移8米【考点】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求的长度是解题的关键3、见解析【解析】【分析】多边形的面积可以等于边长为c的正方形面积

    18、加上两个直角三角形的面积,也可以等于两个直角梯形的面积和,由此得证【详解】解:若直角三角形的两条直角边分别为a、b,斜边为c,则,如图,这个多边形的面积为整理得ab+c2=,故【考点】此题考查了勾股定理的证明,正确掌握多边形的面积的计算方法及勾股定理的内容是解题的关键4、【解析】【分析】先由折叠可知EC=BC=2,进而可知AD=CE,通过全等三角形的角角边判定定理可证明ADFCEF,由全等可知FE=DF,设FC为x,则FE=DF=4-x,根据直角三角形的勾股定理可列方程,从而计算出CF的长度,通过CF与AD的长度可计算出重合部分面积【详解】解:AEC是由ABC沿AC折叠后得到的,EC=BC=2

    19、,且E=B=90,在ADF与CEF中, ,ADFCEF(AAS),设FC=x,则FE=DF=4-x,在RtCEF中,由勾股定理可知: , ,解得 , ,故折叠后重合部分的面积为 【考点】本题考查图形折叠的相关性质,以及直角三角形的勾股定理的应用,以及全等三角形的判定,找到合适的条件,选择适合的判定方法去证明全等三角形,利用勾股定理和方程思想列方程是解决本题的关键5、 (1)见解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理证明即可(2)利用勾股数的公式代入求值即可(1)证明:,构成勾股数.(2)根据最小数为奇数时,另两个正整数为,当a=9时,故答案为:40,41【考点】本题考查了勾股定理逆定理,勾股数的探索,代入求值,熟练掌握勾股数是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年北师大版八年级数学上册第一章勾股定理专题攻克试题(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-637542.html
    相关资源 更多
  • 八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx
  • 八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx
  • 八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx
  • 八年级下册道德与法治全册知识点.docx八年级下册道德与法治全册知识点.docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册英语复习Unit15(无答案).docx八年级下册英语复习Unit15(无答案).docx
  • 八年级下册英语任务型阅读专题训练(无答案).docx八年级下册英语任务型阅读专题训练(无答案).docx
  • 八年级下册英语Unit3SectionB重要考点.docx八年级下册英语Unit3SectionB重要考点.docx
  • 八年级下册第五章测试卷(B卷).docx八年级下册第五章测试卷(B卷).docx
  • 八年级下册第五章测试卷(A卷).docx八年级下册第五章测试卷(A卷).docx
  • 八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx
  • 八年级下册电功率课件.docx八年级下册电功率课件.docx
  • 八年级下册生物第八单元第三章章末卷.docx八年级下册生物第八单元第三章章末卷.docx
  • 八年级下册生物第八单元第一章章末卷.docx八年级下册生物第八单元第一章章末卷.docx
  • 八年级下册生物第七单元第二章2卷.docx八年级下册生物第七单元第二章2卷.docx
  • 八年级下册物理走进分子世界 (共5份打包).docx八年级下册物理走进分子世界 (共5份打包).docx
  • 八年级下册物理10.1浮力助学案(无答案).docx八年级下册物理10.1浮力助学案(无答案).docx
  • 八年级下册期末试卷不含答案.docx八年级下册期末试卷不含答案.docx
  • 八年级下册复习提纲(填空版).docx八年级下册复习提纲(填空版).docx
  • 八年级下册基础知识及热点速查宝典.docx八年级下册基础知识及热点速查宝典.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册同步练习23.马说.docx八年级下册同步练习23.马说.docx
  • 八年级下册同步练习18.在长江源头各拉丹冬.docx八年级下册同步练习18.在长江源头各拉丹冬.docx
  • 八年级下册同步练习13.最后一次讲演.docx八年级下册同步练习13.最后一次讲演.docx
  • 八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1