分享
分享赚钱 收藏 举报 版权申诉 / 23

类型2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试题(含详细解析).docx

  • 上传人:a****
  • 文档编号:637547
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:23
  • 大小:519.41KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 北师大 八年 级数 上册 第一章 勾股定理 专题 测评 试题 详细 解析
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4D13,12,52、下列

    2、四组数中,是勾股数的是()A5,12,13B4,5,6C2,3,4D1,3、如图,在矩形ABCD中,将ABD沿对角线BD对折,得到EBD,DE与BC交于F,则()AB3CD64、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A50cmB120cmC140cmD100cm5、如图,P是等边三角形内的一点,且,以为边在外作,连接,则以下结论中不正确的是()ABCD6、已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A5B25CD5或7、如图,将ABC放在正方形网格图中(图中每个小正方形的边长均为1)

    3、,点A,B,C恰好在网格图中的格点上,那么ABC中BC边上的高是()ABCD8、下列各组数:3、4、54、5、62.5、6、6.58、15、17,其中是勾股数的有()A4组B3组C2组D1组9、已知直角三角形纸片的两条直角边长分别为m和n(mn),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )Am2+2mn+n2=0Bm22mn+n2=0Cm2+2mnn2=0Dm22mnn2=010、如图,在中,为边上一动点,于,于,为中点,则的最小值为().ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在RtABC中,C90,AC9,AB15,则点

    4、C到AB的距离是_2、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_3、如图,在中,于点DE为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点落在CD的延长线上若,则的面积为_4、如图,在RtABC中,ACB90,CDAB于D已知AB15,RtABC的周长为15+9,则CD的长为_5、九章算术中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢

    5、触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为_三、解答题(5小题,每小题10分,共计50分)1、做4个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,再做一个边长为c的正方形,把它们按如图的方式拼成正方形,请用这个图证明勾股定理2、如图,在四边形ABCD中,BD90,C60,AD1,BC2,求AB、CD的长3、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,又,以台风中心为圆心周围250km以内为受影响区域(

    6、1)求的度数;(2)海港受台风影响吗?为什么?4、如图,一艘船由A港沿北偏东60方向航行10km至B港,然后再沿北偏西30方向航行10km至C港(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:1.414,1.732);(2)确定C港在A港的什么方向5、在ABC中,AB15,BC14,AC13,求ABC的面积某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程-参考答案-一、单选题1、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能

    7、构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形2、A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方【详解】解:A、52+122132,都是正整数,是勾股数,故此选项符合题意;B、42+5262,不是勾股数,故此选项不合题意;C、22+3242,不是勾股数,故此选项不合题意;D、,不是正整数,不是勾股数,故此选项不合题意;故选:A【考点】此题主要考

    8、查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数3、A【解析】【分析】根据折叠的性质,可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值【详解】解:,AD=,由折叠可知,AB=BE=6,AD=ED=,BDF=DBFBF=DF=-EF,在Rt中,由勾股定理得:,解得:EF=,故选:A【考点】本题主要考查的是勾股定理的应用,灵活利用折叠进行发掘条件是解题的关键4、D【解析】【分析】画出图形,利用勾股定理即可求解【详解】解:如图,cm,cm,在中,cm,故选:D【考点】本题考查了勾股定理的应用,理解题意,画出图

    9、形是解题的关键5、C【解析】【分析】根据ABC是等边三角形,得出ABC=60,根据BQCBPA,得出CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,求出PBQ=60,即可判断A;根据勾股定理的逆定理即可判断B;根据BPQ是等边三角形,PCQ是直角三角形即可判断D;求出APC=150-QPC,和PC2QC,可得QPC30,即可判断C【详解】解:ABC是等边三角形,ABC=60,BQCBPA,CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,PBQ=PBC+CBQ=PBC+ABP=ABC=60,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,

    10、PC2=52=25,PQ2+QC2=PC2,PQC=90,所以B正确,不符合题意;PB=QB=4,PBQ=60,BPQ是等边三角形,BPQ=60,APB=BQC=BQP+PQC=60+90=150,所以D正确,不符合题意;APC=360-150-60-QPC=150-QPC,PC=5,QC=PA=3,PC2QC,PQC=90,QPC30,APC120所以C不正确,符合题意故选:C【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识6、D【解析】【分析】分情况讨论:当边长为4的边作斜边时;当边长为4的边作直角边时,利用勾股定理分

    11、别求解即可【详解】解:当边长为4的边作斜边时,第三条边的长度为;当边长为4的边作直角边时,第三条边的长度为;综上分析可知,这个三角形的第三条边的长为5或,故D正确故选:D【考点】本题主要考查了勾股定理,掌握分类讨论的思想是解题的关键7、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出ABC是直角三角形,最后设BC边上的高为h,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:, ,即ABC是直角三角形,设BC边上的高为h,则,.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键

    12、.8、C【解析】【详解】解:32+42=52,符合勾股数的定义;42+5262,不符合勾股数的定义;2.5和6.5不是正整数,不符合勾股数的定义;82+152=172,符合勾股数的定义,是勾股数的有:,共2组,故选:C9、C【解析】【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n-m)2,整理即可求解【详解】m2+m2=(nm)2, 2m2=n22mn+m2, m2+2mnn2=0故选C.10、D【解析】【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出APBC时,AP的值最小,即AM的值最小,根据

    13、面积关系建立等式求出其解即可【详解】解:如图,连接AP,AB=3,AC=4,BC=5,EAF=90,PEAB于E,PFAC于F,四边形AEPF是矩形,EF,AP互相平分且EF=AP,EF,AP的交点就是M点当AP的值最小时,AM的值就最小,当APBC时,AP的值最小,即AM的值最小APBC=ABAC,APBC=ABAC,AB=3,AC=4,BC=5,5AP=34,AP=,AM=故选:D【考点】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP的最小值二、填空题1、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积

    14、为定值即可求出则点C到AB的距离【详解】在RtABC中,C90,则有AC2+BC2=AB2AC=9,BC=12,AB=在RtABC中,C=90,则有AC2+BC2=AB2,AC=9,AB=15,BC=12,SABC=ACBC=ABh,h=故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键2、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米故答案为:12米【

    15、考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解3、【解析】【分析】在ABC中由等面积求出,进而得到,设BE=x,进而DE=DB-BE=,最后在中使用勾股定理求出x即可求解【详解】解:在中由勾股定理可知:,在中由勾股定理可知:,设BE=x,由折叠可知:BE=BE,且DE=DB-BE=,在中由勾股定理可知:,代入数据:,解得,故答案为:【考点】本题考查了勾股定理求线段长、折叠的性质等,解题的关键是掌握折叠的性质,熟练使用勾股定理求线段长4、6【解析】【分析】由已知条件得出ACBC9,由勾股定理得出AC2BC2AB2152225,求出ACBC90,由三

    16、角形面积即可得出答案【详解】解: RtABC的周长为159,ACB90,AB15,ACBC9,AC2BC2AB2152225,(ACBC)2(9)2,即AC22ACBCBC2405,2ACBC405225180,ACBC90,ABCDACBC,CD6;故答案为:6【考点】本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键5、【解析】【分析】根据勾股定理即可得出结论【详解】解:设未折断的竹干长为尺,根据题意可列方程为:故答案为:【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是

    17、从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用三、解答题1、见详解【解析】【分析】利用4个直角三角形全等,根据列式,整理即可【详解】证明:如图,即,【考点】本题考查了勾股定理的验证,运用拼图的方式,即利用两种不同的方法计算同一个图形的面积来验证勾股定理是解决本题的关键2、AB22,CD4.【解析】【分析】此题为几何题,看题目只是一个四边形,要求两条未知边,那肯定要添辅助线.过点D作DHBA延长线于H,作DMBC于M.构建矩形HBMD.利用矩形的性质和解直角三角形来求AB、CD的长度.【详解】如图,过点D作DHBA延长线于H,作DMBC于点M.B90,四边形HBMD是

    18、矩形.HDBM,BHMD,ABMADC90,又C60,ADHMDC30,在RtAHD中,AD1,ADH30,则AHAD,DH.MCBCBMBCDH2.在RtCMD中,CD2MC4,DMCD.ABBHAHDMAH【考点】本题考查了勾股定理和矩形的判定与性质.此题的关键是根据题意作出辅助线,构建矩形.3、(1)90;(2)受台风影响,理由见解析【解析】【分析】(1)利用勾股定理的逆定理得出ABC是直角三角形,进而得出ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响【详解】解:(1)AC=300km,BC=400km,AB=500km,AC2+BC2=AB2,ABC是直角

    19、三角形,ACB=90;(2)海港C受台风影响,理由:过点C作CDAB,ABC是直角三角形,ACBC=CDAB,300400=500CD,CD=240(km),以台风中心为圆心周围250km以内为受影响区域,海港C受台风影响【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答4、(1)A、C两地之间的距离为14.1km;(2)C港在A港北偏东15的方向上【解析】【分析】(1)根据方位角的定义可得出ABC=90,再根据勾股定理可求得AC的长为14.1.(2)由(1)可知ABC为等腰直角三角形,从而得出BAC=45,求出CAM=15,所而确定C港在A港的什么方向.【详解】(1)由题意可得,PBC=30,MAB=60,CBQ=60,BAN=30,ABQ=30,ABC=90AB=BC=10,AC=14.1答:A、C两地之间的距离为14.1km(2)由(1)知,ABC为等腰直角三角形,BAC=45,CAM=15,C港在A港北偏东15的方向上【考点】本题考查了方位角的概念及勾股定理及其逆定理,正确理解方位角是解题的关键.5、84.【解析】【详解】解:作ADBC于D,如图所示:设BD = x,则在RtABD中,由勾股定理得:,在RtACD中,由勾股定理得:, ,解之得:

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评试题(含详细解析).docx
    链接地址:https://www.ketangku.com/wenku/file-637547.html
    相关资源 更多
  • 六年级下册数学期末测试卷含答案(b卷).docx六年级下册数学期末测试卷含答案(b卷).docx
  • 六年级下册数学期末测试卷含答案(a卷).docx六年级下册数学期末测试卷含答案(a卷).docx
  • 六年级下册数学期末测试卷含答案解析.docx六年级下册数学期末测试卷含答案解析.docx
  • 六年级下册数学期末测试卷含答案下载.docx六年级下册数学期末测试卷含答案下载.docx
  • 六年级下册数学期末测试卷含答案【黄金题型】.docx六年级下册数学期末测试卷含答案【黄金题型】.docx
  • 六年级下册数学期末测试卷含答案【预热题】.docx六年级下册数学期末测试卷含答案【预热题】.docx
  • 六年级下册数学期末测试卷含答案【达标题】.docx六年级下册数学期末测试卷含答案【达标题】.docx
  • 六年级下册数学期末测试卷含答案【轻巧夺冠】.docx六年级下册数学期末测试卷含答案【轻巧夺冠】.docx
  • 六年级下册数学期末测试卷含答案【能力提升】.docx六年级下册数学期末测试卷含答案【能力提升】.docx
  • 六年级下册数学期末测试卷含答案【考试直接用】.docx六年级下册数学期末测试卷含答案【考试直接用】.docx
  • 六年级下册数学期末测试卷含答案【综合题】.docx六年级下册数学期末测试卷含答案【综合题】.docx
  • 六年级下册数学期末测试卷含答案【综合卷】.docx六年级下册数学期末测试卷含答案【综合卷】.docx
  • 六年级下册数学期末测试卷含答案【精练】.docx六年级下册数学期末测试卷含答案【精练】.docx
  • 六年级下册数学期末测试卷含答案【突破训练】.docx六年级下册数学期末测试卷含答案【突破训练】.docx
  • 六年级下册数学期末测试卷含答案【研优卷】.docx六年级下册数学期末测试卷含答案【研优卷】.docx
  • 六年级下册数学期末测试卷含答案【满分必刷】.docx六年级下册数学期末测试卷含答案【满分必刷】.docx
  • 六年级下册数学期末测试卷含答案【模拟题】.docx六年级下册数学期末测试卷含答案【模拟题】.docx
  • 六年级下册数学期末测试卷含答案【最新】.docx六年级下册数学期末测试卷含答案【最新】.docx
  • 六年级下册数学期末测试卷含答案【新】.docx六年级下册数学期末测试卷含答案【新】.docx
  • 六年级下册数学期末测试卷含答案【巩固】.docx六年级下册数学期末测试卷含答案【巩固】.docx
  • 六年级下册数学期末测试卷含答案【实用】.docx六年级下册数学期末测试卷含答案【实用】.docx
  • 六年级下册数学期末测试卷含答案【完整版】.docx六年级下册数学期末测试卷含答案【完整版】.docx
  • 六年级下册数学期末测试卷含答案【夺分金卷】.docx六年级下册数学期末测试卷含答案【夺分金卷】.docx
  • 六年级下册数学期末测试卷含答案【基础题】.docx六年级下册数学期末测试卷含答案【基础题】.docx
  • 六年级下册数学期末测试卷含答案【培优】.docx六年级下册数学期末测试卷含答案【培优】.docx
  • 六年级下册数学期末测试卷含答案【培优b卷】.docx六年级下册数学期末测试卷含答案【培优b卷】.docx
  • 六年级下册数学期末测试卷含答案【培优a卷】.docx六年级下册数学期末测试卷含答案【培优a卷】.docx
  • 六年级下册数学期末测试卷含答案【名师推荐】.docx六年级下册数学期末测试卷含答案【名师推荐】.docx
  • 六年级下册数学期末测试卷含答案【典型题】.docx六年级下册数学期末测试卷含答案【典型题】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1