分享
分享赚钱 收藏 举报 版权申诉 / 18

类型2022-2023学年度京改版八年级数学上册期中测评试题 卷(Ⅲ)(解析卷).docx

  • 上传人:a****
  • 文档编号:639088
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:18
  • 大小:286.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年度京改版八年级数学上册期中测评试题 卷解析卷 2022 2023 学年度 改版 八年 级数 上册 期中 测评 试题 解析
    资源描述:

    1、京改版八年级数学上册期中测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知,则分式与的大小关系是()ABCD不能确定2、若,则x的值等于()A4BC2D3、下列计算中,结果正确的是()AB

    2、CD4、下列判断正确的是A带根号的式子一定是二次根式B一定是二次根式C一定是二次根式D二次根式的值必定是无理数5、下列分式,中,最简分式有()A1个B2个C3个D4个二、多选题(5小题,每小题4分,共计20分)1、下列分式变形正确的是()ABCD2、如果,那么下列等式正确的是()ABCD3、下列约分不正确的是()ABCD4、下列计算或判断中不正确的是()A3都是27的立方根BC的立方根是2D5、下列结论不正确的是()A64的立方根是B没有立方根C立方根等于本身的数是0D= 第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若将三个数,表示在数轴上,则被如图所示的墨迹覆盖的

    3、数是_.2、分式的值比分式的值大3,则x为_3、 “绿水青山就是金山银山”某地为美化环境,计划种植树木2000棵由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前4天完成任务则实际每天植树_棵4、请写一个比小的无理数.答:_5、已知数a、b、c在数粒上的位置如图所示,化简的结果是_四、解答题(5小题,每小题8分,共计40分)1、先阅读,再解答:由 可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如: ,请完成下列问题:(1)的有理化因式是 _;(2)化去式子分母中的根号

    4、: _(直接写结果)(3) (填或)(4)利用你发现的规律计算下列式子的值:2、甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成如果总加工费不超过 7800 元,那么甲至少加工了多少天?3、阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化

    5、因式例如:与,与(1)请你写出两个二次根式,使它们互为有理化因式:_,这样化简一个分母含有二次根式的式子时,采用分母、分子同乘分母的有理化因式的方法就可以了例如:(2)请仿照上述方法化简:;(3)比较与的大小4、某小区要扩大绿化带面积,已知原绿化带的形状是一个边长为10m的正方形,计划扩大后绿化带的形状仍是一个正方形,并且其面积是原绿化带面积的4倍,求扩大后绿化带的边长5、计算: -参考答案-一、单选题1、A【解析】【分析】将两个式子作差,利用分式的减法法则化简,即可求解【详解】解:,故选:A【考点】本题考查分式的大小比较,掌握作差法是解题的关键2、C【解析】【分析】先化简、合并等号左边的二次

    6、根式,再将系数化为,继而两边平方,进一步求解可得【详解】解:原方程化为,合并,得,即,故选:C【考点】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并3、C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定【详解】解:A.,故该选项不正确,不符合题意;B.,故该选项不正确,不符合题意;C.,故该选项正确,符合题意;D.,故该选项不正确,不符合题意;故选:C【考点】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键4、C

    7、【解析】【分析】直接利用二次根式的定义分析得出答案【详解】解:A、带根号的式子不一定是二次根式,故此选项错误;B、,a0时,一定是二次根式,故此选项错误;C、一定是二次根式,故此选项正确;D、二次根式的值不一定是无理数,故此选项错误;故选C【考点】此题主要考查了二次根式的定义,正确把握二次根式的性质是解题关键5、B【解析】【分析】根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简分式,故原式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键二、多选题1、

    8、ABC【解析】【分析】依据分式变形的原则,上下同乘同一个不为0的数,不改变原分式大小依次进行判断即可【详解】 ,故A正确 ,故B正确 ,故C正确 ,故D错误故选ABC【考点】本题考查了分式的性质,熟练使用分式的性质对分式进行变形是解决本题的关键2、BC【解析】【分析】先判断a,b的符号,然后根据二次根式的性质逐项分析即可【详解】解,A、无意义,选项错误,不符合题意;B、,选项正确,符合题意;C、,选项正确,符合题意;D、 ,选项错误,不符合题意;故选BC【考点】本题考查了二次根式的乘法,二次根式的除法,以及二次根式的性质,熟练掌握性质是解答本题的关键3、ABD【解析】【分析】根据分式的约分的方

    9、法对每个选项逐个计算即可判断出正确选项【详解】A,错误,符合题意;B,错误,符合题意;C,正确,不符合题意;D,错误,符合题意;故答案选:ABD【考点】本题考查了分式的约分,熟练掌握分式的运算法则是解决本题的关键4、AD【解析】【分析】根据立方根的定义:如果,那么m就是n的立方根,以及立方根的求解方法进行求解即可【详解】解:A、3都是27的立方根,-3是-27的立方根,故此说法错误,符合题意;B、,计算正确,不符合题意;C、,8的立方根是2,则的立方根是2,计算正确,不符合题意;D、,计算错误,符合题意;故选AD【考点】本题主要考查了立方根,解题的关键在于能够熟练掌握立方根的定义5、ABC【解

    10、析】【分析】根据立方根的定义解答即可【详解】解:A、64的立方根是4,原说法错误,故本选项符合题意;B、有立方根,是,原说法错误,故本选项符合题意;C、立方根等于它本身的数是0、1、-1,原说法错误,故本选项符合题意;D、,故选项D不符合题意,故选ABC【考点】本题考查了立方根解题的关键是掌握立方根的定义的运用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根三、填空题1、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可【详解】因为,所以,所以,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为

    11、.【考点】此题考查估算无理数的大小,实数与数轴,解题关键在于估算出取值范围.2、1【解析】【分析】先根据题意得出方程,求出方程的解,再进行检验,最后得出答案即可【详解】根据题意得:-=3,方程两边都乘以x-2得:-(3-x)-1=3(x-2),解得:x=1,检验:把x=1代入x-20,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大3【考点】本题考查了解分式方程,能求出分式方程的解是解此题的关键3、125【解析】【分析】设原计划每天植树x棵,则实际每天植树(1+25%)x棵,根据工作时间=工作总量工作效率,结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,解之经检验后即可得

    12、出x的值,再将其代入(1+25%)x中即可求出结论【详解】解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,依题意得:,解得:x=100,经检验,x=100是原方程的解,且符合题意,(1+25%)x=125故答案为:125【考点】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键4、(答案不唯一)【解析】【分析】根据无理数的定义填空即可.【详解】解:比小的无理数如:(答案不唯一),故答案为(答案不唯一).【考点】本题考查了无理数的定义及比较无理数大小,比较基础5、0【解析】【分析】首先根据数轴可以得到ca0b,然后则根据绝对值的性质,以及算术平方根的性质即可化简【详

    13、解】解:根据数轴可以得到:ca0b,则c-b0,a+c0,则原式=-a+(a+c)+(b-c)-b=-a+a+c+b-c-b=0故答案是:0【考点】本题考查了二次根式的性质、整式的加减、以及绝对值的性质,解答此题,要弄清四、解答题1、(1)+1;(2);(3);(4)原式=2018-1=2017【考点】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍2、(1)乙每天加工40个幂件,甲每天加工60个件;(2)甲至少加工40天.【解析】【分析】(

    14、1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可【详解】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件化简得6001.5=600+51.5x解得x=401.5x=60经检验,x=40是分式方程的解且符合实际意义答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得 由得y=75-1.5x 将代入得150x+120(75-1.5x)7800解得x40,当x=40时,y=15,

    15、符合问题的实际意义答:甲至少加工了40天【考点】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大3、 (1)与(答案不唯一)(2)(3)【解析】【分析】(1)利用互为有理化因式的定义求解;(2)把分子和分母分别乘以,然后利用二次根式的乘法法则运算即可;(3)分别化简与,再利用无理数比较大小的方法比较即可(1)根据互为有理化因式的定义可得:与(答案不唯一)(2);(3),【考点】本题考查二次根式的混合运算,:先把二次根式化简为最简二次根式,然后进行二次根式的乘除运算,在合并即可,解题的关键是熟练掌握并运用二次根式的性质和运算法则4、【解析】【分析】先求出原绿化带的面积,再求出扩大后绿化带的面积,然后开方即可得出答案【详解】解:原绿化带的面积为(m2),扩大后绿化带的面积为(m2),则扩大后绿化带的边长是(m),答:扩大后绿化带的边长为20m【考点】此题考查了算术平方根,根据题意求出扩大后绿化带的面积是解题的关键5、【解析】【分析】根据实数的混合运算法则进行计算即可【详解】解:原式=【考点】本题考查实数的混合运算,应用到负指数幂、零指数幂、绝对值、算数平方根等知识,掌握这些知识为解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度京改版八年级数学上册期中测评试题 卷(Ⅲ)(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-639088.html
    相关资源 更多
  • 人教版数学二年级上册重点题型专项练习(满分必刷).docx人教版数学二年级上册重点题型专项练习(满分必刷).docx
  • 人教版数学二年级上册重点题型专项练习(有一套).docx人教版数学二年级上册重点题型专项练习(有一套).docx
  • 人教版数学二年级上册重点题型专项练习(易错题).docx人教版数学二年级上册重点题型专项练习(易错题).docx
  • 人教版数学二年级上册重点题型专项练习(必刷)word版.docx人教版数学二年级上册重点题型专项练习(必刷)word版.docx
  • 人教版数学二年级上册重点题型专项练习(实验班).docx人教版数学二年级上册重点题型专项练习(实验班).docx
  • 人教版数学二年级上册重点题型专项练习(实用).docx人教版数学二年级上册重点题型专项练习(实用).docx
  • 人教版数学二年级上册重点题型专项练习(完整版)word版.docx人教版数学二年级上册重点题型专项练习(完整版)word版.docx
  • 人教版数学二年级上册重点题型专项练习(完整版).docx人教版数学二年级上册重点题型专项练习(完整版).docx
  • 人教版数学二年级上册重点题型专项练习(夺分金卷).docx人教版数学二年级上册重点题型专项练习(夺分金卷).docx
  • 人教版数学二年级上册重点题型专项练习(夺冠)word版.docx人教版数学二年级上册重点题型专项练习(夺冠)word版.docx
  • 人教版数学二年级上册重点题型专项练习(夺冠).docx人教版数学二年级上册重点题型专项练习(夺冠).docx
  • 人教版数学二年级上册重点题型专项练习(夺冠系列)word版.docx人教版数学二年级上册重点题型专项练习(夺冠系列)word版.docx
  • 人教版数学二年级上册重点题型专项练习(基础题).docx人教版数学二年级上册重点题型专项练习(基础题).docx
  • 人教版数学二年级上册重点题型专项练习(培优B卷).docx人教版数学二年级上册重点题型专项练习(培优B卷).docx
  • 人教版数学二年级上册重点题型专项练习(培优A卷).docx人教版数学二年级上册重点题型专项练习(培优A卷).docx
  • 人教版数学二年级上册重点题型专项练习(名师系列)word版.docx人教版数学二年级上册重点题型专项练习(名师系列)word版.docx
  • 人教版数学二年级上册重点题型专项练习(典型题).docx人教版数学二年级上册重点题型专项练习(典型题).docx
  • 人教版数学二年级上册重点题型专项练习(全国通用).docx人教版数学二年级上册重点题型专项练习(全国通用).docx
  • 人教版数学二年级上册重点题型专项练习(word).docx人教版数学二年级上册重点题型专项练习(word).docx
  • 人教版数学二年级上册重点题型专项练习(A卷)word版.docx人教版数学二年级上册重点题型专项练习(A卷)word版.docx
  • 人教版数学二年级上册重点题型专项练习(A卷).docx人教版数学二年级上册重点题型专项练习(A卷).docx
  • 人教版数学二年级上册重点题型专项练习附解析答案.docx人教版数学二年级上册重点题型专项练习附解析答案.docx
  • 人教版数学二年级上册重点题型专项练习附答案(轻巧夺冠).docx人教版数学二年级上册重点题型专项练习附答案(轻巧夺冠).docx
  • 人教版数学二年级上册重点题型专项练习附答案(综合题).docx人教版数学二年级上册重点题型专项练习附答案(综合题).docx
  • 人教版数学二年级上册重点题型专项练习附答案(突破训练).docx人教版数学二年级上册重点题型专项练习附答案(突破训练).docx
  • 人教版数学二年级上册重点题型专项练习附答案(巩固).docx人教版数学二年级上册重点题型专项练习附答案(巩固).docx
  • 人教版数学二年级上册重点题型专项练习附答案(完整版).docx人教版数学二年级上册重点题型专项练习附答案(完整版).docx
  • 人教版数学二年级上册重点题型专项练习附答案(夺分金卷).docx人教版数学二年级上册重点题型专项练习附答案(夺分金卷).docx
  • 人教版数学二年级上册重点题型专项练习附答案(基础题).docx人教版数学二年级上册重点题型专项练习附答案(基础题).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1