分享
分享赚钱 收藏 举报 版权申诉 / 16

类型2022-2023学年度人教版九年级数学上册第二十一章一元二次方程定向攻克练习题(含答案详解).docx

  • 上传人:a****
  • 文档编号:641018
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:16
  • 大小:172.27KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二十一 一元 二次方程 定向 攻克 练习题 答案 详解
    资源描述:

    1、九年级数学上册第二十一章一元二次方程定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-22、已知x1,x2是方程x23x20的两

    2、根,则x12+x22的值为()A5B10C11D133、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D若矩形OCPD的面积为1时,则点P的坐标为()A(,3)B(,2)C(,2)和(1,1)D(,3)和(1,1)4、若、为方程2x2-5x-1=0的两个实数根,则的值为()A-13B12C14D155、关于的一元二次方程的根的情况是()A有两不相等实数根B有两相等实数根C无实数根D不能确定6、若a是关于x的方程3x2x1=0的一个根,则20216a22a的值是()A2023B2022C2020D201

    3、97、若关于的方程没有实数根,则的值可以为()ABC0D18、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()ABCD9、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)300010、九章算术“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门

    4、的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈10尺,1尺10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()Ax2+12(x+0.68)2Bx2+(x+0.68)212Cx2+1002(x+68)2Dx2+(x+68)21002第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若n是方程x2+mx+n=0的根,n0,则m+n等于_2、已知0是关于的一元二次方程的一个实数根,则=_3、已知方程x23x10的根是x1和x2,则x1x2x1x2_4、写出一个一元二次方程,使它有两个不相等的实数根_5、九章算术是我国古代的数学名著,其中“勾股”章有一题

    5、,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程_三、解答题(5小题,每小题10分,共计50分)1、已知1是方程x2+axb=0的一个根,求a2b2+2b的值2、某商店如果将进价8元的商品按每件10元出售,那么每天可销售200件,现采用提高售价,减少进货量的方法增加利润,如果这种商品的售价每涨1元,那么每天的进货量就会减少20件,要想每天获得640元的利润,则每件商品的售价定为多少元最为合适?3、(1)解方程:(2)解方程:4、商场某种商品平均每天可销售30件,每件盈利50元 为了尽快减少库存,商场决定采取适当的降价措施 经调

    6、查发现,每件商品每降价1元,商场平均每天可多售出 2件设每件商品降价x元 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?5、解下列方程(1)x22x0;(2)2x23x10-参考答案-一、单选题1、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x22、D【解析】【分析】利

    7、用根与系数的关系得到再利用完全平方公式得到然后利用整体代入的方法计算【详解】解:根据题意得 所以故选:D【考点】本题考查的是一元二次方程的根与系数的关系,以及完全平方公式的变形,掌握以上知识是解题的关键3、D【解析】【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0m),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论【详解】解:点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,设点P的坐标为(m,-3m+4)(0m),OC=m,OD=-3m+4矩形OCP

    8、D的面积为1,m(-3m+4)=1,m1=,m2=1,点P的坐标为(,3)或(1,1)故选:D【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键4、B【解析】【详解】解:、为方程2x2-5x-1=0的两个实数根,因此可得22=5+1,代入22+3+5=5+1+3+5=5(+)+3+1=5+3(-)+1=12;故选B【考点】此题主要考查了一元二次方程的根与系数的关系,关键是利用一元二次方程的一般式,得到根与系数的关系x1+x2=-,x1x2=,然后变形代入即可5、A【解析】【详解】【分析】根据一元二次方程的根的判

    9、别式进行判断即可.【详解】,=-(k+3)2-4k=k2+6k+9-4k=(k+1)2+8,(k+1)20,(k+1)2+80,即0,方程有两个不相等实数根,故选A.【考点】本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b2-4ac当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根6、D【解析】【分析】先把a代入方程得到3a2-a=1,然后方程两边都乘以-2得-6a2+2a=-2,从而求出答案【详解】解:由题意得:3a2-a-1=0,3a2-a=1,-6a2+2a=-2,20216a22a =2021-2=2019故选

    10、:D【考点】本题考查的是逆用一元二次方程解的定义得出-6a2+2a的值,因此在解题时要重视解题思路的逆向分析7、A【解析】【分析】根据关于x的方程没有实数根,判断出0,求出m的取值范围,再找出符合条件的m的值【详解】解:关于的方程没有实数根,=0,解得:,故选项中只有A选项满足,故选A.【考点】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.8、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可【详解】解:设有x个队参赛,根据题意,可列方程为:x(x1)36,故选A【考点】此题考查由实际

    11、问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.9、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程10、D【解析】【分析】1丈100寸,6尺8寸68寸,设门的宽为x

    12、寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【详解】解:1丈100寸,6尺8寸68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意得:x2+(x+68)21002.故选:D.【考点】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键二、填空题1、1【解析】【分析】将n代入方程可得n2+mn+n=0,提取n得到n(m+n+1)=0,由n0可得m+n+1=0,进而得出m+n的值.【详解】由题意得:n2+mn+n=0,n(m+n+1)=0,n0,m+n+1=0,m+n=1.故答案为1.【考点】

    13、本题主要考查一元二次方程根的意义.2、-1【解析】【分析】根据一元二次方程的二次项系数不等于零可得,由0是一元二次方程方程的解,把,代入方程可得,进而即可解得的值【详解】解:0是关于的一元二次方程的一个实数根,且,故应填-1【考点】本题主要考查了一元二次方程中的字母求值问题3、2【解析】【分析】根据根与系数的关系可得出x1+x23、x1x21,将其代入x1+x2x1x2中即可求出结论【详解】解:方程x23x10的两个实数根为x1、x2,x1x23、x1 x21,x1x2x1x2312,故答案为:2【考点】本题考查了根与系数的关系,一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+

    14、x2,x1x24、x2+x10(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的0就可以了【详解】解:比如a1,b1,c1,b24ac1+450,方程为x2+x10故答案为:x2+x10(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握 “根的判别式大于0,方程有两个不相等的实数根”是解题的关键5、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或故答案为:或【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列

    15、出一元二次方程是解题的关键三、解答题1、1【解析】【分析】把x=-1代入方程,得a+b=1,再代入中即可.【详解】解:是方程的一个根, 【考点】本题考查了一元二次方程的解一元二次方程的根一定满足该方程2、每件商品的售价定为16元最为合适【解析】【分析】设每件商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,利用每天销售这种商品的利润=每件的销售利润日销售量(日进货量),即可得出关于x的一元二次方程,解之即可得出x的值,再结合“现采用提高售价,减少进货量的方法增加利润”,即可得出每件商品的售价定为16元最为合适【详解】解:设每件

    16、商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,依题意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16又现采用提高售价,减少进货量的方法增加利润,x=16答:每件商品的售价定为16元最为合适【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、(1),;(2),【解析】【分析】(1)依据平方根的定义求解即可;(2)利用公式法求解即可【详解】(1)两边直接开平方,得:,或,解得:,;(2),则,【考点】本题考查了直接开平方法、公式法解一元

    17、二次方程对于解方程方法的选择,应该根据方程的特点灵活的选择解方程的方法4、(1) 2x,(2)每件商品降价20元,商场日盈利可达2100元【解析】【详解】(1) 2x,(2)解:由题意,得(302x)(50x)2 100解之得x115,x220该商场为尽快减少库存,降价越多越吸引顾客x20答:每件商品降价20元,商场日盈利可达2 100元5、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2),【考点】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十一章一元二次方程定向攻克练习题(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-641018.html
    相关资源 更多
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(满分必刷).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(满分必刷).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(模拟题).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(模拟题).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(有一套).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(有一套).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(易错题).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(易错题).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(巩固).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(巩固).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(实用).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(实用).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(完整版).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(完整版).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(夺分金卷).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(夺分金卷).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(夺冠).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(夺冠).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(夺冠系列).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(夺冠系列).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(含答案).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(含答案).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(名师推荐).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(名师推荐).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(各地真题).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(各地真题).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(典型题).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(典型题).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(典优).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(典优).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品(全国通用).docx六年级上册道德与法治第二单元《我们是公民》测试卷精品(全国通用).docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品附答案.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品附答案.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品含答案.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品含答案.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品及答案.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品及答案.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品加答案.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品加答案.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【预热题】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【预热题】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【达标题】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【达标题】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【考试直接用】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【考试直接用】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【精选题】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【精选题】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【突破训练】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【突破训练】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【易错题】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【易错题】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【必刷】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【必刷】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【完整版】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【完整版】.docx
  • 六年级上册道德与法治第二单元《我们是公民》测试卷精品【夺分金卷】.docx六年级上册道德与法治第二单元《我们是公民》测试卷精品【夺分金卷】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1