分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年度人教版九年级数学上册第二十四章圆定向攻克试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:641522
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:1,022.39KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 定向 攻克 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D1042、如图,在ABC中,ACB90,A

    2、CBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D3、有一个圆的半径为5,则该圆的弦长不可能是()A1B4C10D114、如图,破残的轮子上,弓形的弦AB为4m,高CD为1m,则这个轮子的半径长为()AmBmC5mDm5、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O外D点A与O的位置关系无法确定6、如图,正五边形内接于,为上的一点(点不与点重合),则的度数

    3、为()ABCD7、下列图形为正多边形的是()ABCD8、一个商标图案如图中阴影部分,在长方形中,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是()ABCD9、若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()ABCD10、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD,边长为4,点P和点Q在正方形的边上运动,且PQ4,若点P从点B

    4、出发沿BCDA的路线向点A运动,到点A停止运动;点Q从点A出发,沿ABCD的路线向点D运动,到达点D停止运动它们同时出发,且运动速度相同,则在运动过程中PQ的中点O所经过的路径长为_2、如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)3、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_4、如图,正方形ABCD的边长为2a,E为BC边的中点, 的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为 5、如图,AB为圆O的切线,点A为切点,OB交圆O于点C,点D在圆O上,连接AD

    5、、CD、OA,若ADC=25,则B的度数为_三、解答题(5小题,每小题10分,共计50分)1、已知,正方形ABCD中,M、N分别为AD边上的两点,连接BM、CN并延长交于一点H,连接AH,E为BM上一点,连接AE、CE,ECHMNH90(1)如图1,若E为BM的中点,且DM3AM,求线段AB的长(2)如图2,若点F为BE中点,点G为CF延长线上一点,且EG/BC,CEGE,求证:(3)如图3,在(1)的条件下,点P为线段AD上一动点,连接BP,作CQBP于Q,将BCQ沿BC翻折得到BCl,点K、R分别为线段BC、Bl上两点,且BI3RI,BC4BK,连接CR、IK交于点T,连接BT,直接写出B

    6、CT面积的最大值2、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长3、如图,AB、CD是O中两条互相垂直的弦,垂足为点E,且AECE,点F是BC的中点,延长FE交AD于点G,已知AE1,BE3,OE(1)求证:AEDCEB;(2)求证:FGAD;(3)若一条直线l到圆心O的距离d,试判断直线l是否是圆O的切线,并说明理由4、如图,分别切、于点、切于点,交于点与不重合)(1)用直尺和圆规作出;(保留作图痕迹,不写作法)(2)若半径为1,求的长5、如图,在中,以为直径的O与相交于点,过点作O的切线交于点(1)求证:;(2)若O的半径为,求的长-参考答案-一、单选题

    7、1、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)2、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC9

    8、0,点G的运动轨迹的长为故选:D3、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是解题的关键4、D【解析】【分析】连接OB,由垂径定理得出BD的长;连接OB,再在中,由勾股定理得出方程,解方程即可【详解】解:连接OB,如图所示:由题意得:OCAB,ADBDAB2(m),在RtOBD中,根据勾股定理得:OD2+BD2OB2,即(OB1)2+22OB2,解得:OB(m),即这个轮子的半径长为m,故选:D【考点】本题主要考查垂径定理的应用以及勾股

    9、定理,熟练掌握垂径定理和勾股定理是解题的关键5、A【解析】【分析】先求出点A到圆心O的距离,再根据点与圆的位置依据判断可得【详解】解:点A(4,3)到圆心O的距离,OAr5,点A在O上,故选:A【考点】本题考查了对点与圆的位置关系的判断关键要记住若半径为,点到圆心的距离为,则有:当时,点在圆外;当时,点在圆上,当时,点在圆内,也考查了勾股定理的应用6、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72,即COD=72,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知

    10、圆周角定理的应用.7、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案【详解】根据正多边形的定义,得到D中图形是正五边形故选D【考点】本题考查了正多边形,关键是掌握正多边形的定义8、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案【详解】解:作辅助线DE、EF使BCEF为一矩形则SCEF=(8+4)42=24cm2,S正方形ADEF=44=16cm2,S扇形ADF=4cm2,阴影部分的面积=24-(16-4)=故选:D【考点】本题

    11、主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的9、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为,然后根据勾股定理可求解【详解】解:设圆锥母线长为R,由题意得:圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:,圆锥的高为;故选C【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键10、D【解析】【分析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平

    12、分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选D【考点】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键二、填空题1、【解析】【分析】【详解】解:画出点O运动的轨迹,如图虚线部分,则点P从B到A的运动过程中,PQ的中点O所经过的路线长等于3,故答案为:32、5【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积扇形OCD的面积,利用扇形的面积公式计算即可求解【详解】AOCBOD,阴影部分的面积=扇形OAB的面积扇形OCD的面积5故答案为5【考点】

    13、本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积扇形OCD的面积是解题的关键3、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键4、a【解析】【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=a

    14、,根据四边形EGFH是菱形,四边形BCGH是矩形,即可得到RtOEG中,OE=a,即可得到EF=a【详解】如图,作DE的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a-x,CE=a,RtCEG中,(2a-x)2+a2=x2,解得x=a,GE=FG=a,同理可得,EH=FH=a,四边形EGFH是菱形,四边形BCGH是矩形,GO=BC=a,RtOEG中,OE=,EF=a,故答案为a【考点】本题主要考查了正方形的性质以及相交两圆的性质,相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦注意:在习题中

    15、常常通过公共弦在两圆之间建立联系5、40【解析】【分析】根据圆周角和圆心角的关系,可以得到AOC的度数,然后根据AB为O的切线和直角三角形的两个锐角互余,即可求得B的度数【详解】解:ADC=25,AOC=50,AB为O的切线,点A为切点,OAB=90,B=90-AOC=90-50=40,故答案为:40【考点】本题考查切线的性质、圆周角定理、直角三角形的性质,利用数形结合的思想解答问题是解答本题的关键三、解答题1、 (1)4(2)证明见解析(3)【解析】【分析】(1)由正方形ABCD的性质,可得到ABM为直角三角形,再由E为BM中点,得到BM=2AE,最后由勾股定理求得AB的长度;(2)过点A作

    16、AYBH于点Y,由EGBC,CEGE,F为BE中点,可得GEFCBF,从而得到BCE为等腰三角形,再根据角的关系,易得ECGECH=BCD=45,得到HFC为等腰直角三角形,再根据ABYBCF,得到BM=CF,AY=BF,从而转化得到结论;(3)当P、D重合时得到最大面积,以B为原点建立直角坐标系,求出坐标和表达式,联立方程组求解,即可得出答案(1)解:四边形ABCD为正方形,且DM3AM,BAM=90,AD=AB=4AM,ABM为直角三角形,E为BM的中点,BM=2AE=,在RtABM中,设AM=x,则AB=4x,解得,AB=4;(2)过点A作AYBH于点Y,EG/BC,CEGE,G=BCG

    17、=ECG,F为BE的中点,GEFCBF(AAS),GE=BC,BCE为等腰三角形,CFBE,CFE=90;ECHMNH90,MNH=CND,CNDNCD=90,ECH=NCD,ECGECH=BCD=45,HFC为等腰直角三角形,CF=HF;ABECBE=90,CBEBCF=90,ABE=BCF,AB=BC,AYB=BFC=90,ABYBCF(AAS),BY=CF,AY=BF,BY=HFBY-FY=HF-FYBF=HY=AY,AHY是等腰直角三角形,,;(3)BQC=90,点Q在以BC为直径的半圆弧上运动,当P点与D点重合时,此时Q点离BC最远,QBC和IBC面积最大,此时BCT面积最大;CQB

    18、P,CBQ为等腰直角三角形,由翻折可得,CBI为等腰直角三角形,建立如图直角坐标系,作RSBC,TVBC,由(1)中结论可知:B(0,0),C(4,0),I(2,),BI3RI,BC4BK,解得RS=,R,K(1,0),直线KI解析式为:,直线CR解析式为:,联立,解得,即T,【考点】本题属于四边形综合题,考查正方形的性质、全等三角形证明、翻折问题、等腰三角形的性质等,熟练掌握每个性质的核心内容,理清相互之间的联系,属于压轴题2、2【解析】【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CDAB,根据垂径定理得CE=DE=CD=4,然后利用勾股定理计算出OE,再利用AE=OA-OE

    19、进行计算即可【详解】连接OC,如图,AB是O的直径,AB10,OCOA5,CDAB,CEDECD84,在RtOCE中,OC5,CE4,OE3,AEOAOE532【考点】本题考查了垂径定理,掌握垂径定理及勾股定理是关键3、(1)见解析;(2)见解析;(3)直线l是圆O的切线,理由见解析【解析】【分析】(1)由圆周角定理得AC,由ASA得出AEDCEB;(2)由直角三角形斜边上的中线性质得EFBCBF,由等腰三角形的性质得FEBB,由圆周角定理和对顶角相等证出AAEG90,进而得出结论;(3)作OHAB于H,连接OB,由垂径定理得出AHBHAB2,则EHAHAE1,由勾股定理求出OH1,OB,由一

    20、条直线l到圆心O的距离d等于O的半径,即可得出结论【详解】(1)证明:由圆周角定理得:AC,在AED和CEB中,AEDCEB(ASA);(2)证明:ABCD,AEDCEB90,C+B90,点F是BC的中点,EFBCBF,FEBB,AC,AEGFEBB,A+AEGC+B90,AGE90,FGAD;(3)解:直线l是圆O的切线,理由如下:作OHAB于H,连接OB,如图所示:AE1,BE3,ABAE+BE4,OHAB,AHBHAB2,EHAHAE1,OH1,OB,即O的半径为,一条直线l到圆心O的距离dO的半径,直线l是圆O的切线【考点】本题是圆的综合题目,考查了圆周角定理、垂径定理、切线的判定、全

    21、等三角形的判定、直角三角形斜边上的中线性质、等腰三角形的性质、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和垂径定理是解题的关键4、(1)见解析;(2)【解析】【分析】(1)以A为圆心,为半径画弧交于,作直线交于点,直线即为所求(2)设,利用勾股定理构建方程即可解决问题【详解】解:(1)如图,直线即为所求(2)连接,是的内切圆,是切点,四边形是矩形,四边形是正方形,设,在中,【考点】本题考查作图复杂作图,切线的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型5、(1)见详解;(2)4.8【解析】【分析】(1)连接OD,由AB=AC,OB=OD,则B=ODB=C,则ODAC,由DE为切线,即可得到结论成立;(2)连接AD,则有ADBC,得到BD=CD=8,求出AD=6,利用三角形的面积公式,即可求出DE的长度【详解】解:连接OD,如图:AB=AC,B=C,OB=OD,B=ODB,B=ODB=C,ODAC,DE是切线,ODDE,ACDE;(2)连接AD,如(1)图,AB为直径,AB=AC,AD是等腰三角形ABC的高,也是中线,CD=BD=,ADC=90,AB=AC=,由勾股定理,得:,;【考点】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆定向攻克试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-641522.html
    相关资源 更多
  • 人教版小学一年级下册数学 期中测试卷带答案(综合卷).docx人教版小学一年级下册数学 期中测试卷带答案(综合卷).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(精练).docx人教版小学一年级下册数学 期中测试卷带答案(精练).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(突破训练).docx人教版小学一年级下册数学 期中测试卷带答案(突破训练).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(研优卷).docx人教版小学一年级下册数学 期中测试卷带答案(研优卷).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(满分必刷).docx人教版小学一年级下册数学 期中测试卷带答案(满分必刷).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(模拟题).docx人教版小学一年级下册数学 期中测试卷带答案(模拟题).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(最新).docx人教版小学一年级下册数学 期中测试卷带答案(最新).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(新).docx人教版小学一年级下册数学 期中测试卷带答案(新).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(实用).docx人教版小学一年级下册数学 期中测试卷带答案(实用).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(完整版).docx人教版小学一年级下册数学 期中测试卷带答案(完整版).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(夺分金卷).docx人教版小学一年级下册数学 期中测试卷带答案(夺分金卷).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(基础题).docx人教版小学一年级下册数学 期中测试卷带答案(基础题).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(培优).docx人教版小学一年级下册数学 期中测试卷带答案(培优).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(培优b卷).docx人教版小学一年级下册数学 期中测试卷带答案(培优b卷).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(培优a卷).docx人教版小学一年级下册数学 期中测试卷带答案(培优a卷).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(名师推荐).docx人教版小学一年级下册数学 期中测试卷带答案(名师推荐).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(典型题).docx人教版小学一年级下册数学 期中测试卷带答案(典型题).docx
  • 人教版小学一年级下册数学 期中测试卷带答案(a卷).docx人教版小学一年级下册数学 期中测试卷带答案(a卷).docx
  • 人教版小学一年级下册数学 期中测试卷带答案解析.docx人教版小学一年级下册数学 期中测试卷带答案解析.docx
  • 人教版小学一年级下册数学 期中测试卷带答案下载.docx人教版小学一年级下册数学 期中测试卷带答案下载.docx
  • 人教版小学一年级下册数学 期中测试卷带答案ab卷.docx人教版小学一年级下册数学 期中测试卷带答案ab卷.docx
  • 人教版小学一年级下册数学 期中测试卷带下载答案.docx人教版小学一年级下册数学 期中测试卷带下载答案.docx
  • 人教版小学一年级下册数学 期中测试卷审定版.docx人教版小学一年级下册数学 期中测试卷审定版.docx
  • 人教版小学一年级下册数学 期中测试卷完美版.docx人教版小学一年级下册数学 期中测试卷完美版.docx
  • 人教版小学一年级下册数学 期中测试卷完整答案.docx人教版小学一年级下册数学 期中测试卷完整答案.docx
  • 人教版小学一年级下册数学 期中测试卷完整版.docx人教版小学一年级下册数学 期中测试卷完整版.docx
  • 人教版小学一年级下册数学 期中测试卷完整参考答案.docx人教版小学一年级下册数学 期中测试卷完整参考答案.docx
  • 人教版小学一年级下册数学 期中测试卷完整.docx人教版小学一年级下册数学 期中测试卷完整.docx
  • 人教版小学一年级下册数学 期中测试卷学生专用.docx人教版小学一年级下册数学 期中测试卷学生专用.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1