2022-2023学年度北师大版八年级数学上册第一章勾股定理同步练习试题(含答案解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 同步 练习 试题 答案 解析
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、ABC的三边长a,b,c满足+(b12)2+|c13|0,则ABC的面积是()A65B60C30D262、如图,
2、在22的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是()ABCD3、有一个直角三角形的两边长分别为3和4,则第三边的长为()A5BCD5或4、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或105、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则ABC 的度数为()A45B50C55D606、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为()A4.5B4.6C4.8D57、如图,中,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为().ABC3D8
3、、如图,在矩形ABCD中,将ABD沿对角线BD对折,得到EBD,DE与BC交于F,则()AB3CD69、如图,将直角三角形纸片沿AD折叠,使点B落在AC延长线上的点E处若AC3,BC=4,则图中阴影部分的面积是()ABCD10、九章算术被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深等于1寸,锯道长1尺,则圆形木材的直径是()(1尺=10寸)A12寸B13寸C24寸D26寸第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知R
4、tABC中,C90,ab14cm,c10cm,则RtABC的面积等于_cm22、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O若AD=3,BC=5,则_3、学习完勾股定理后,尹老师要求数学兴趣小组的同学测量学校旗杆的高度同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知如图,经测量,绳子多出的部分长度为1米,将绳子沿地面拉直,绳子底端距离旗杆底端4米,则旗杆的高度为_米4、已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为_5、如图,在的正方形网格中,每个小正方形的顶点称为格点,点、均在格
5、点上,则_三、解答题(5小题,每小题10分,共计50分)1、设直角三角形的两条直角边长及斜边上的高分别为a,b及h,求证:2、一架云梯长25m,如图所示斜靠在一而墙上,梯子底端C离墙7m(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向滑动了多少米?3、在边长为8的等边ABC中,点D是边AB上的一动点,点E在边AC上,且CE = 2AD,射线DE绕点D顺时针旋转60交BC边于F(1)如图1,求证:AED = BDF;(2)如图2,在射线DF上取DP=DE,连接BP,求DBP的度数;取边BC的中点M,当PM取最小值时,求AD的长.4、如图,在四边形中,
6、于,(1)求证:;(2)若,求四边形的面积5、如图,CEAB于点E,BDAC于点D,ABAC(1)求证:ABDACE(2)连接BC,若AD6,CD4,求ABC的面积-参考答案-一、单选题1、C【解析】【分析】首先根据非负数的性质可得a-5=0,b-12=0,c-13=0,进而可得a、b、c的值,再利用勾股定理逆定理证明ABC是直角三角形,最后由直角三角形面积公式求解即可【详解】解:+(b-12)2+|c-13|=0,a-5=0,b-12=0,c-13=0,a=5,b=12,c=13,52+122=132,ABC是直角三角形,SABC=30故选:C【考点】此题主要考查了非负数的性质,以及勾股定理
7、逆定理,熟练掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,利用非负数性质求出a、b、c的值是解题的关键2、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可【详解】解:如图,均可与点和组成直角三角形,故选:C【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)3、D【解析】【分析】分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可【详解】解:当4是直角边时,斜边=5;当4是斜边时,另一条直角边=;故选:D【考点】本题考查的是勾股定理,如果直角三角形的两条
8、直角边长分别是a,b,斜边长为c,那么a2+b2=c24、C【解析】【详解】分两种情况:在图中,由勾股定理,得;BCBDCD8210.在图中,由勾股定理,得;BCBDCD826.故选C.5、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC,根据勾股定理的逆定理得到ABC是等腰直角三角形,ACB=90,再根据三角形内角和定理得到答案【详解】连接AC,AC=BC,ABC是等腰直角三角形,ACB=90,ABC= (180-ACB)=45故选A【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断
9、直角三角形6、C【解析】【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边的高【详解】解:设斜边长为c,高为h由勾股定理可得: c2=62+82 ,则 c=10 ,直角三角形面积 S=68=ch ,可得 h=4.8 ,故选:C【考点】本题考查了勾股定理,利用勾股定理求直角三角形的边长和利用面积法求直角三角形的高是解决此类题的关键7、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可得出结果【详解】解:D是AB中点,AB=4,AD=BD=2,将ABC折叠,使点C与AB的中点D重合,DN=CN,BN=BC-CN=6-DN,在RtDBN中,DN2=BN2+DB2,DN2
10、=(6-DN)2+4,DN=,CN=DN=,故选:D【考点】本题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键8、A【解析】【分析】根据折叠的性质,可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值【详解】解:,AD=,由折叠可知,AB=BE=6,AD=ED=,BDF=DBFBF=DF=-EF,在Rt中,由勾股定理得:,解得:EF=,故选:A【考点】本题主要考查的是勾股定理的应用,灵活利用折叠进行发掘条件是解题的关键9、B【解析】【分析】由勾股定理求出AB,设CD=x,则BD=4-x,根据求出x得到CD的长,利用面积求出答案【详解】解:ACB=90,由折
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-643348.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
