2022-2023学年综合复习人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(解析卷).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年综合复习人教版九年级数学上册期中专项测评试题 卷解析卷 2022 2023 学年 综合 复习 人教版 九年级 数学 上册 期中 专项 测评 试题 解析
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、抛物线y3(x2)2+5的顶点坐标是()A(2,5)B(2,5)C
2、(2,5)D(2,5)2、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度设花带的宽度为,则可列方程为()ABCD3、某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A5B6C7D84、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边形的面积为,则与的函数图象可能是()ABCD二、多选题(5小题,每小题4分,共计20分)1、已知二次函数y=x2-4x+a,下列说法正确的是()A
3、当x1时,y随x的增大而减小B若图象与x轴有交点,则a-4C当a=3时,不等式x2-4x+a0的解集是1x3D若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-32、如图,在ABC中,ABBC,将ABC绕点B顺时针旋转a度,得到A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 ACDFa度BA1ECFCDFFCDBEBF3、如图是抛物线y1ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2mx+n(m0)与抛物线交于A,B两
4、点,下列结论中正确的是()A2a+b0Bm+n3C抛物线与x轴的另一个交点是(1,0)D方程ax2+bx+c3有两个相等的实数根E当1x4时,有y2y14、两个关于的一元二次方程和,其中,是常数,且如果是方程的一个根,那么下列各数中,一定是方程的根的是()ABC2D-25、对于实数a,b,定义运算“”:,例如:42,因为,所以,若函数,则下列结论正确的是()A方程的解为,;B当时,y随x的增大而增大;C若关于x的方程有三个解,则;D当时,函数的最大值为1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知方程的一根为,则方程的另一根为_2、试写出一个二次函数关系式,使它
5、对应的一元二次方程的一个根为0,另一个根在1到2之间:_3、二次函数的最大值是_4、写出一个一元二次方程,使它有两个不相等的实数根_5、对于任意实数,抛物线与轴都有公共点则的取值范围是_四、解答题(5小题,每小题8分,共计40分)1、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,一次函数图象与坐标轴交于点A、B,二次函数图象过A、B两点(1)求二次函数解析式;(2
6、)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由3、冰墩墩是2022年北京冬季奥运会的吉祥物冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来某超市用2400元购进一批冰墩墩玩偶出售若进价降低20%,则可以多买50个市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元求w关于x的函数解析式,并求每周总利润的最大值;当每周总利润不低
7、于1870元时,求每个冰墩墩玩偶售价x的范围4、抛物线过点,点,顶点为(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;(3)如图2,在(2)的条件下,点是线段上(与点,不重合)的动点,连接,作,边交轴于点,设点的横坐标为,求的取值范围5、解下列方程:(1);(2)-参考答案-一、单选题1、C【解析】【分析】根据二次函数的性质ya(xh)2+k的顶点坐标是(h,k)进行求解即可. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】抛物线解析式为y=3(x-2)2+5,二次函数图象的顶点坐标是(2,5)故选C【考点】本
8、题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等2、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.3、B【解析】【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了场比赛,即可列出方程,求解即可【详解】解:设有x个班级参加比赛,解得:(舍),则共有6个班级参加比赛,故选:B【考点】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系4、B【解析】【分析】利
9、用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键5、A 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案【详解】解:正方形ABCD边长为4,AE=BF=C
10、G=DHAH=BE=CF=DG,A=B=C=DAEHBFECGFDHGy=44-x(4-x)4=16-8x+2x2=2(x-2)2+8y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意故选:A【考点】本题考查了动点问题的函数图象,正确地写出函数解析式并数形结合分析是解题的关键二、多选题1、ACD【解析】【分析】A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明0,易求a的取值;C、解一元二次不等式即可;D、根据左加
11、右减,上加下减作答即可【详解】解:yx24xa,对称轴:直线x2,A、当x1时,y随x的增大而减小,故该选项正确;B、当b24ac164a0,即a4时,二次函数和x轴有交点,该选项错误;C、当a3时,则不等式x24x30,即(x-3)(x-1)0,不等式的解集是1x3,故该选项正确;D、yx24xa配方后是y(x2)2a4,向上平移1个单位,再向左平移3个单位后,函数解析式是y(x-1)2a3,把(1,2)代入函数解析式,易求a3,故该选项正确故选:ACD【点睛】本题考查了二次函数的性质,解题的关键是掌握有关二次函数的增减性、与x轴交点的条件、与一元二次不等式的关系、上下左右平移的规律2、AB
12、D【解析】【分析】根据等腰三角形的性质由BABC得AC,再根据旋转的性质得BABA1BCBC1,ABA1CBC1,AA1CC1,而根据对顶角相等得BFC1DFC,于是可根据三角形内角和定理得到CDFFBC1;利用“ASA”证明BAEBC1F,则BEBF,所以A1ECF;由于CDF,则只有当旋转角等于C时才有DFFC【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:BABC,AC,ABC绕点B顺时针旋转度,得到A1BC1,BABA1,BCBC1,ABA1CBC1,AA1CC1,BFC1DFC,CDFFBC1,所以A正确,BABA1BCBC1,在BAE和BC1F中,BAEBC1F(ASA
13、),BEBF,故D正确而BA1BC,A1ECF,所以B正确;CDF,当旋转角等于C时,DFFC,所以C错误;故选ABD【点睛】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.3、ABD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可【详解】解:A、抛物线对称轴为直线,故A正确;B、直线y2mx+n(m0)与抛物线交于A,B两点,当时,故B正确;C、抛物线与x轴的一个交点为,对称轴为,抛物线与x轴的另一个交点是,故C错误;D、方程ax2+bx+c3从函数角度可以看作是y1ax
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-646709.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
