山东省临沂市2022-2023学年高三下学期5月二模数学试.pdf
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 临沂市 2022 2023 学年 下学 月二模 数学
- 资源描述:
-
1、数学试题 第 页(共 页)年普通高等学校招生全国统一考试(模拟)数 学注意事项:答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 小题,每小题 分,共 分在每小题给出的四个选项中,只有一项是符合题目要求的集合,则 ,为虚数单位,若 ,则实数 若向量 (,),(,),则“”是“()”的充分不必要条件必要不充分条件充要条件既不充分也不必要条件若,且 ,则
2、 的最小值为 算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一,算珠梁上部分叫上珠,梁下部分叫下珠例如,在百位档拨一颗下珠,十位档拨一颗上珠和两颗下珠,则表示数字若在个、十、百、千位档中,先随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字小于 的概率为 如图,在 中,若在此三角形内挖去一个以 为圆心、圆弧与 相切的扇面,则图中阴影部分绕直线 旋转一周所得几何体的表面积为数学试题 第 页(共 页)$#已知椭圆 ()的左焦点为,上顶点为 若存在直线 与椭圆交于不同的两点,的重心为,则 的斜率的取值范围是(,
3、),)(,),)&0%#$#$%现有一个帐篷,下部分的形状是高为 的正六棱柱,上 部 分 的 形 状 是 侧 棱 长 为 的 正 六 棱 锥,如 图 当 该 帐 篷 的 体 积 最 大 时,直 线 与 底 面 所成角的正弦值为 二、选择题:本题共 小题,每小题 分,共 分在每小题给出的选项中,有多项符合题目要求全部选对的得 分,部分选对的得 分,有选错的得 分#$&ZY0%某兴趣小组研究光照时长()和向日葵种子发芽数量(颗)之间的关系,采集 组数据,作如图所示的散点图若去掉(,)后,下列说法正确的是相关系数 变小决定系数 变大残差平方和变小解释变量 与预报变量 的相关性变强已知函数()()(,
4、)在一个周期内的图象如图,则ZY0()()点(,)是一个对称中心()的单调递减区间是,()把函数 的图象上所有点的横坐标变为原来的 倍,纵坐标不变,再向左平移 个单位,可得()的图象一口袋中有除颜色外完全相同的 个红球和 个白球,从中无放回的随机取两次,每次取 个球,记事件:第一次取出的是红球;事件:第一次取出的是白球;事件:取出的两球同色;事件:取出的两球中至少有一个是白球则事件,为互斥事件事件,为独立事件()()数学试题 第 页(共 页)设定义在 上的函数()与()的导函数分别为()和(),若()(),()(),且()为奇函数,则,()()()()()()三、填空题:本题共 小题,每小题
5、分,共 分已知()的展开式中二项式系数和为,则 的系数为 (用数字作答)某工厂为研究某种产品的产量(吨)与所需某种原材料(吨)的相关性,在生产过程中收集了对应数据如下表:根据表中数据,得出 关于 的经验回归方程为 ,则 “中国剩余定理”又称“孙子定理”,讲的是一个关于同余的问题现有这样一个问题:将正整数中能被 除余 且被 除余 的数按由小到大的顺序排成一列,构成数列,则其前 项和 已知双曲线 的左、右焦点分别为,过右焦点 且倾斜角为 的直线 与该双曲线交于,两点(点 位于第一象限),的内切圆 的半径为,的内切圆 的半径为,则点 的横坐标为 ,(第一空 分,第二空 分)四、解答题:本题共 小题,
6、共 分解答应写出文字说明、证明过程或演算步骤(分)已知数列的前 项和为,()求的通项公式;()从下面两个条件中选择一个作为条件,求数列的前 项和 ();()注:如果选择条件和条件分别解答,按第一个解答计分(分)记 的内角,所对的边分别为,已知 ()证明:;()若 ,求 的取值范围#%$&1(分)如图,在 中,为 的中点 沿 将折起,点 在线段 上,如图数学试题 第 页(共 页)()若 ,证明:平面;()若平面 平面,是否存在点,使得平面 与平面 的夹角为?若存在,求点 的位置;若不存在,说明理由(分)甲流和普通感冒都属于上呼吸道感染,而甲流是流行性感冒中致病力最强的一种流感,在医学检测中发现未
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
浙江省2012高考语文一轮总复习课件 第七章 名句名篇.ppt
