2022年人教版九年级数学上册第二十四章圆综合训练试卷(附答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 上册 第二 十四 综合 训练 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B
2、62C68D782、如图,O中,弦ABCD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD于M,过F作FHAC,垂足为G,以下结论:;HCBF:MFFC:,其中成立的个数是()A1个B2个C3个D4个3、已知一个扇形的弧长为,圆心角是,则它的半径长为( )A6cmB5cmC4cmD3cm4、如图,已知中,如果以点为圆心的圆与斜边有公共点,那么的半径的取值范围是()ABCD5、如图,是的直径,弦于点,则的长为()A4B5C8D166、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD7、若某圆锥的侧面展
3、开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()ABCD8、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD9、如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A50mB40mC30mD25m10、如图,是的内接三角形,是直径,则的长为( )A4BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在O中,若弦垂直平分半径,则弦所对的圆周角等于_2、如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围
4、成的曲边三角形称为勒洛三角形若等边三角形的边长为,则勒洛三角形的周长为_3、如图,边长相等的正五边形和正六边形拼接在一起,则ABC的度数为_4、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_5、如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为_三、解答题(5小题,每小题10分,共计50分)1、抛物线yax2+2x+c与x轴交于A(1,0)、B两点,与y轴交于点C(0,3),点D(m,3)在抛物线上(1)求抛物线的解析式;(2)如图1,连接BC、BD,点P在对称轴左侧的抛物线上,若PB
5、CDBC,求点P的坐标;(3)如图2,点Q为第四象限抛物线上一点,经过C、D、Q三点作M,M的弦QFy轴,求证:点F在定直线上2、如图所示,四边形ABCD的顶点在同一个圆上,另一个圆的圆心在AB边上,且该圆与四边形ABCD的其余三条边相切求证:3、如图,在四边形中,.是四边形内一点,且.求证:(1);(2)四边形是菱形.4、(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,分别与相切于点A
6、,B,求的长5、如图,AB是O的直径,D,E为O上位于AB异侧的两点,连接BD并延长至点C,使得CDBD,连接AC交O于点F,连接AE,DE,DF(1)证明:EC;(2)若E55,求BDF的度数-参考答案-一、单选题1、C【解析】【分析】由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案【详解】解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O
7、,CDE=B=68,故选:C【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质2、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可【详解】解:F为的中点,故正确,FCMFAC,FCGACM+FCM,AMEFMCACM+FAC,AMEFMCFCGFCM,FCFM,故错误,ABCD,FHAC,AEMCGF90,CFH+FCG90,BAF+AME90,CFHBAF,HCBF,故正确,AGF90,CAF+AFH90,180,180,故正确,故选:C【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解
8、题的关键是熟练掌握基本知识,属于中考选择题中的压轴题3、A【解析】【分析】设扇形半径为rcm,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm,则=5,解得r=6cm.故选A.【考点】本题主要考查扇形弧长公式.4、C【解析】【分析】作CDAB于D,根据勾股定理计算出AB=13,再利用面积法计算出然后根据直线与圆的位置关系得到当时,以C为圆心、r为半径作的圆与斜边AB有公共点【详解】解:作CDAB于D,如图,C=90,AC=3,BC=4,以C为圆心、r为半径作的圆与斜边AB有公共点时,r的取值范围为故选:C【考点】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d:
9、直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr5、C【解析】【分析】根据垂径定理得出CM=DM,再由已知条件得出圆的半径为5,在RtOCM中,由勾股定理得出CM即可,从而得出CD【详解】解:AB是O的直径,弦CDAB,CM=DM,AM=2,BM=8,AB=10,OA=OC=5,在RtOCM中,OM2+CM2=OC2,CM=4,CD=8故选:C【考点】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键6、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角函数的定义用表示出的长,可知圆形纸片
10、不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键7、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为,然后根据勾股定理可求解【详解】解:设圆锥母线长为R,由题意得:圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:,圆锥的高为;故选C【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键8、C【解析】【分析】先依据题意画出图形,如图(见解析),过点
11、A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键9、D【解析】【分析】设圆弧的圆心为O,过O作OCAB于C,交于D,连接OA,先由垂径定理得ACBCAB75m,再由勾股定理求出OC100m,然后求出CD的长即可【详解】解:设圆弧的圆心为O,过O作OCAB于C,交于D,连接OA,则OAOD250125(m),ACBCAB150
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020-2021学年英语外研版选修6课件:MODULE 3 SECTION Ⅳ WRITING——有关人际关系、友谊的文章 .ppt
