2022年人教版八年级数学上册第十三章轴对称综合测评试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 八年 级数 上册 第十三 轴对称 综合 测评 试卷 答案 详解
- 资源描述:
-
1、人教版八年级数学上册第十三章轴对称综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC和ECD都是等腰直角三角形,ABC的顶点A在ECD的斜边DE上下列结论:ACEBCD;DABACE;A
2、E+ACCD;ABD是直角三角形其中正确的有()A1个B2个C3个D4个2、如图,在ABC中,ACB90,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E若AC3,AB5,则DE等于()A2BCD3、下列图形中,是轴对称图形的是()ABCD4、如图,在平面直角坐标系中,ABC位于第二象限,点B的坐标是(5,2),先把ABC向右平移4个单位长度得到A1B1C1,再作与A1B1C1关于于x轴对称的A2B2C2,则点B的对应点B2的坐标是()A(3,2)B(2,3)C(1,2)D(1,2)5、将三角形纸片()按如图所示的方式折叠,使
3、点C落在边上的点D,折痕为已知,若以点B、D、F为顶点的三角形与相似,那么的长度是()A2B或2CD或26、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD7、如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是()A2B3C4D58、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=E
4、G,其中正确的有()ABCD9、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A3个B4个C5个D无数个10、已知点与点关于轴对称,则点的坐标为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图已知OA=a,P是射线ON上一动点,AON=60,当OP=_时,AOP为等边三角形2、将一副直角三角板如图摆放,点C在EF上,AC经过点D已知A=EDF=90,AB=ACE=3
5、0,BCE=40,则CDF=_3、如图,分别以的边,所在直线为称轴作的对称图形和,线段与相交于点O,连接、有如下结论:;平分:;其中正确的结论个数为_4、如图,RtABC中,C90,D是BC的中点,CAD30,BC6,则AD+DB的长为_5、如图,已知等边三角形ABC中,点D,E分别在边AB,BC上,把BDE沿直线DE翻折,使点B落在B处,DB,EB分别交AC于点F,G.若ADF80,则DEG的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,是边长为2的等边三角形,是顶角为120的等腰三角形,以点为顶点作,点、分别在、上(1)如图,当时,则的周长为_;(2)如图,求证:2、已知
6、:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BF与AC交于点C,BGE=ADE(1)如图1,求证:AD=CD;(2)如图2,BH是ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍3、如图,点D是等边三角形ABC的边BC上一点,以AD为边作等边ADE,连接CE.(1)求证:;(2)若BAD=20,求AEC的度数. 4、已知的三边长分别为,(1)若,求的取值范围;(2)在(1)的条件下,若为奇数,试判断的形状,并说明理由5、在中,D为BC延长线上一点,点E为线段
7、AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当时,则_;(2)当时,如图2,连接AD,判断的形状,并证明;如图3,直线CF与ED交于点F,满足P为直线CF上一动点当的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明-参考答案-一、单选题1、C【解析】【分析】根据等腰直角三角形的性质得到CACB,CABCBA45,CDCE,ECDE45,则可根据“SAS”证明ACEBCD,于是可对进行判断;利用三角形外角性质得到DAB+BACE+ACE,加上CABE45,则可得对进行判断;利用CECD和三角形三边之间的关系可对进行判断;根据ACEBCD得到BDCE45,则可对进
8、行判断【详解】ABC和ECD都是等腰直角三角形,CACB,CABCBA45,CDCE,ECDE45,ACE+ACDACD+BCD,ACEBCD,在ACE和BCD中,ACEBCD(SAS),所以正确;DACE+ACE,即DAB+BACE+ACE,而CABE45,DABACE,所以正确;AE+ACCE,CECD,AE+ACCD,所以错误;ACEBCD,BDCE45,CDE45,ADBADC+BDC45+4590,ADB为直角三角形,所以正确故选:C【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解
9、题的关键2、C【解析】【详解】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC=4,连接AE,从作法可知:DE是AB的垂直评分线,根据性质AE=BE,在RtACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在RtADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.3、C【解析】【分析】依据轴对称图形的定义逐项分析即可得出C选项正确【详解】解:
10、因为选项A、B、D中的图形都不能通过沿某条直线折叠直线两旁的部分能达到完全重合,所以它们不符合轴对称图形的定义和要求,因此选项A、B、D中的图形都不是轴对称图形,而C选项中的图形沿上下边中点的连线折叠后,折痕的左右两边能完全重合,因此符合轴对称图形的定义和要求,因此C选项中的图形是轴对称图形,故选:C【考点】本题主要考查了轴对称图形的定义,学生需要掌握轴对称图形的定义内容,理解轴对称图形的特征,方能解决问题找对图形,同时也考查了学生对图形的感知力和空间想象的能力4、D【解析】【分析】首先利用平移的性质得到A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到A2B2C2中B2的坐
11、标,即可得出答案【详解】解:把ABC向右平移4个单位长度得到A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与A1B1C1关于于x轴对称的A2B2C2中B2的坐标为(-1,-2),故选D【考点】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键5、B【解析】【分析】分两种情况:若或若,再根据相似三角形的性质解题【详解】沿折叠后点C和点D重合,设,则,以点B、D、F为顶点的三角形与相似,分两种情况:若,则,即,解得;若,则,即,解得综上,的长为或2,故选:B【考点】本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键6、C【解析】【分析】由等边三角形有三
12、条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质7、B【解析】【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的C点有3个故共有3个点,故选:B【考点】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想8、D【解析】【分析】证得CAFGAB(SAS),从而推得正
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
