2022年强化训练人教版九年级数学上册期末专项测试试题 卷(Ⅲ)(含答案及详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年强化训练人教版九年级数学上册期末专项测试试题 卷含答案及详解 2022 强化 训练 人教版 九年级 数学 上册 期末 专项 测试 试题 答案 详解
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专项测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列各式中表示二次函数的是()Ayx2+By2x2CyDy(x1)
2、2x22、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D23、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()ABCD4、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD5、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD二、多选题(5小题,每小题4分,共计20分)1、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是()AB方程有两个相等的实根CD点P
3、到直线AB的最大距离2、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是()ABC3D53、在中,且关于x的方程有两个相等的实数根,以下结论正确的是()AAC边上的中线长为1BAC边上的高为 线 封 密 内 号学级年名姓 线 封 密 外 CBC边上的中线长为D外接圆的半径是24、古希腊数学家欧几里得在几何原本中记载了用尺规作某种六边形的方法,其步骤是:在O上任取一点A,连接AO并延长交O于点B;以点B为圆心,BO为半径作圆弧分别交O于C,D两点;连接CO,DO并延长分别交O于点E,F;顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE连接AD,EF,交于点G,
4、则下列结论正确的是 AAOE的内心与外心都是点GBFGAFOAC点G是线段EF的三等分点DEFAF5、下列关于x的方程没有实数根的是()Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)210第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_2、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+
5、c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)3、若代数式有意义,则x的取值范围是 _4、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_5、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,
6、当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由2、关于x的一元二次方程kx2+(k+1)x+0(1)当k取何值时,方程有两个不相等的实数根?(2)若其根的判别式的值为3,求k的值及该方程的根3、如图是两条互相垂直的街道, 且A到B, C的距离都是4千米. 现甲从B地走向A地, 乙从A地走向C地, 若两人同时出发且速度都是4千米/时, 问何时两人之间的距离最近?4、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标
7、;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是N的切线5、已知关于的方程有实根(1)求的取值范围;(2)设方程的两个根分别是,且,试求的值 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、B【解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确;C、y,含有分式,不是二次函数,故此选项错误;D、y(x1)2x22x+1,是一次函数,故此选项错误故选:B【考点】本题
8、考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键2、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解3、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键4、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐
9、标为(0,0) 线 封 密 内 号学级年名姓 线 封 密 外 将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键5、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用二、多选题1、BCD【解析】【分析】根据二次函数的性质、方程
10、与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断【详解】解:由图象可知,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确;当时,抛物线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)在直线上,则,解得,即,由抛物线的对称轴为得,则,即,又 A(1,3),B(4,0)在抛物线上,则,解得,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线 线 封 密 内 号学级年名姓 线 封 密 外 与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,
11、为等腰直角三角形,又直线由直线平移得到,且轴,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD【考点】本题考查了二次函数的图象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离2、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,或,当2、3
12、是直角边时,斜边;,3可以是三角形斜边;故选AC【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键3、BCD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出AC的长,利用等积法求出斜边上的高,根据勾股定理求出BC边上的中线,利用直角三角形外接圆的半径是斜边的一半得出外接圆的半径【详解】一元二次方程x2-4x+b=0有两个相等的实数根,(-4)2-4b=0,b=4AC=4,AB2+BC2=AC2,ABC为直角三角形,直角三角形斜边上的中线等于斜边的一
13、半的性质,AC边上的中线长=2,故A错误;ABBC=ACh22=4hh=故B正确;BC边上的中线=故C正确直角三角形外接圆的半径等于斜边的一半,所以为2故D正确故答案为:BCD【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当=0,方程有两个相等的实数根;还考查了利用勾股定理判定直角三角形及勾股定理的应用,并考查了直角三角形斜边上的中线等于斜边的一半的性质以及三角形的外接圆的性质4、ABC【解析】【分析】证明AOE是等边三角形,EFOA,ADOE,可判断A;证明AGF=AOF=60,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D【详解】解:
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-702137.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
