2022年高考数学一轮复习 考点规范练15 导数与函数的单调性、极值、最值(含解析)新人教A版(文).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练15 导数与函数的单调性、极值、最值含解析新人教A版文 2022 年高 数学 一轮 复习 考点 规范 15 导数 函数 调性 极值 解析 新人
- 资源描述:
-
1、考点规范练15导数与函数的单调性、极值、最值基础巩固1.函数f(x)=(x-3)ex的单调递增区间是()A.(-,2)B.(0,3)C.(1,4)D.(2,+)答案:D解析:函数f(x)=(x-3)ex的导数为f(x)=(x-3)ex=ex+(x-3)ex=(x-2)ex.由函数导数与函数单调性的关系,得当f(x)0时,函数f(x)单调递增,此时由不等式f(x)=(x-2)ex0,解得x2.2.若x=1是函数f(x)=ax+ln x的极值点,则()A.f(x)有极大值-1B.f(x)有极小值-1C.f(x)有极大值0D.f(x)有极小值0答案:A解析:x=1是函数f(x)=ax+lnx的极值点
2、,f(1)=0,a+11=0,a=-1.f(x)=-1+1x=0x=1.当x1时,f(x)0,当0x0,因此f(x)有极大值-1.3.定义域为R的可导函数y=f(x)的导函数f(x),满足f(x)2ex的解集为()A.(-,0)B.(-,2)C.(0,+)D.(2,+)答案:C解析:设g(x)=f(x)ex,则g(x)=f(x)-f(x)ex.f(x)0,即函数g(x)在定义域内单调递增.f(0)=2,g(0)=f(0)=2,不等式f(x)2ex等价于g(x)g(0).函数g(x)在定义域内单调递增.x0,不等式的解集为(0,+),故选C.4.函数y=f(x)的导函数y=f(x)的图象如图所示
3、,则函数y=f(x)的图象可能是()答案:D解析:设导函数y=f(x)的三个零点分别为x1,x2,x3,且x10x2x3.所以在区间(-,x1)和(x2,x3)内,f(x)0,f(x)是增函数,所以函数y=f(x)的图象可能为D,故选D.5.已知函数f(x)=-12x2+4x-3ln x在区间t,t+1上不单调,则t的取值范围是.答案:(0,1)(2,3)解析:由题意知f(x)=-x+4-3x=-x2+4x-3x=-(x-1)(x-3)x.由f(x)=0得x1=1,x2=3,可知1,3是函数f(x)的两个极值点.则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间t,t+1上就不
4、单调,由t1t+1或t3t+1,得0t1或2t0解得0x1,由g(x)1,即函数g(x)在区间(0,1)内单调递增,在区间(1,+)内单调递减.当a0时,令g(x)=0,得x=1或x=12a,若12a12,则由g(x)0解得x1或0x12a,由g(x)0解得12ax1,即0a0解得x12a或0x1,由g(x)0解得1x12a,即函数g(x)在区间(0,1),12a,+内单调递增,在区间1,12a内单调递减;若12a=1,即a=12,则在区间(0,+)上恒有g(x)0,即函数g(x)在区间(0,+)内单调递增.综上可得:当a=0时,函数g(x)在区间(0,1)内单调递增,在区间(1,+)内单调递
5、减;当0a12时,函数g(x)在区间0,12a内单调递增,在区间12a,1内单调递减,在区间(1,+)内单调递增.7.已知函数f(x)=2x3-ax2+2.(1)讨论f(x)的单调性;(2)当0a0,则当x(-,0)a3,+时,f(x)0;当x0,a3时,f(x)0.故f(x)在(-,0),a3,+单调递增,在0,a3单调递减;若a=0,f(x)在(-,+)单调递增;若a0;当xa3,0时,f(x)0.故f(x)在-,a3,(0,+)单调递增,在a3,0单调递减.(2)当0a3时,由(1)知,f(x)在0,a3单调递减,在a3,1单调递增,所以f(x)在0,1的最小值为fa3=-a327+2,
6、最大值为f(0)=2或f(1)=4-a.于是m=-a327+2,M=4-a,0a2,2,2a3.所以M-m=2-a+a327,0a2,a327,2a3.当0a2时,可知2-a+a327单调递减,所以M-m的取值范围是827,2.当2a0,讨论函数g(x)=f(x)-f(a)x-a的单调性.解:设h(x)=f(x)-2x-c,则h(x)=2lnx-2x+1-c,其定义域为(0,+),h(x)=2x-2.(1)当0x0;当x1时,h(x)0.所以h(x)在区间(0,1)单调递增,在区间(1,+)单调递减.从而当x=1时,h(x)取得最大值,最大值为h(1)=-1-c.故当且仅当-1-c0,即c-1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-716942.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
湖北省襄阳市第四中学2020届高三历史9月联考试题(PDF).pdf
