2023届新高考数学专题复习 专题23 运用正余弦定理研究三角形或多边形(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学专题复习 专题23 运用正余弦定理研究三角形或多边形教师版 2023 新高 数学 专题 复习 23 运用 余弦 定理 研究 三角形 多边形 教师版
- 资源描述:
-
1、专题23 运用正余弦定理研究三角形或多边形关于三角形或者多边形中的边角以及面积等问题是三角函数模块中重点考查的问题,对于此类问题涉及的知识点为正余弦定理,题目中往往给出多边形,因此,就要根据题目所给的条件,标出边和角,合理的选择三角形,尽量选择边和角都比较多的条件的三角形,然后运用正余弦定理解决一、题型选讲题型一 、运用正余弦定理研究三角形中的问题例1、【2020年高考江苏】在ABC中,角A,B,C的对边分别为a,b,c,已知(1)求的值;(2)在边BC上取一点D,使得,求的值【解析】(1)在中,因为,由余弦定理,得,所以.在中,由正弦定理,得,所以(2)在中,因为,所以为钝角,而,所以为锐角
2、.故则.因为,所以,.从而变式1、(2020届山东省潍坊市高三上期末)在;这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在中,角的对边分别为,已知,.(1)求;(2)如图,为边上一点,求的面积【解析】若选择条件,则答案为:(1)在中,由正弦定理得,因为,所以,所以,因为,所以.(2)解法1:设,易知在中由余弦定理得:,解得.所以在中,所以,所以,所以解法2:因为,所以,因为所以,所以因为为锐角,所以又所以所以若选择条件,则答案为:(1)因为,所以,由正弦定理得,因为,所以,因为,所以,则,所以.(2)同选择变式2、(2019徐州、连云港、宿迁三检)ABCD如图,在中,已知点在
3、边上,(1)求的值;(2)求的长【解析】:(1)在中,所以同理可得,所以(2)在中,由正弦定理得,又,所以在中,由余弦定理得,变式3、(2020浙江镇海中学高三3月模拟)在中,为的平分线,则_【答案】【解析】原题图形如图所示:则:设,则,又解得:本题正确结果:变式4、【2019年高考浙江卷】在中,点在线段上,若,则_,_【答案】,【解析】如图,在中,由正弦定理有:,而,所以.题型二、运用正余弦定理研究多边形中的问题例2、【2020年高考全国卷理数】如图,在三棱锥PABC的平面展开图中,AC=1,ABAC,ABAD,CAE=30,则cosFCB=_.【答案】【解析】,由勾股定理得,同理得,在中,
4、由余弦定理得,在中,由余弦定理得.故答案为:.变式1、(2018徐州、连云港、宿迁三检)如图,在梯形ABCD中,已知ADBC,AD1,BD2,CAD,tanADC2.(1) 求CD的长;(2) 求BCD的面积【解析】: (1)因为tanADC2,且ADC(0,),所以sinADC,cosADC.所以sinACDsin sin sinADCcoscosADCsin ,(6分)在ADC中,由正弦定理得CD(2) 因为ADBC, 所以cosBCDcosADC,sinBCDsinADC在BDC中,由余弦定理得BD2BC2CD22BCCDcosBCD,得BC22BC350,解得BC7, (12分)所以S
5、BCDBCCDsinBCD77.变式2、(2017年苏北四市模拟)如图,在四边形ABCD中,已知AB13,AC10,AD5,CD,50.(1) 求cosBAC的值;(2) 求sinCAD的值;(3) 求BAD的面积【解析】: (1) 因为cosBAC,所以cosBAC.(2) 在ADC中,AC10,AD5,CD.由余弦定理,得cosCAD.因为CAD(0,),所以sinCAD.(3) 由(1)知,cosBAC.因为BAC(0,),所以sinBAC.从而sinBADsin(BACCAD) sinBACcosCADcosBACsinCAD .所以SBADABADsinBAD135 28.题型三、运
6、用正余弦定理研究情境中的三角形或多边形问题例3、(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征为了测量“泉标”高度,某同学在“泉标”的正西方向的点A处测得“泉标”顶端的仰角为,沿点A向北偏东前进100 m到达点B,在点B处测得“泉标”顶端的仰角为,则“泉标”的高度为( )A50 mB100 mC120 mD150 m【答案】A【解析】如图,为“泉标”高度,设高为米,由题意,平面,米,,在中,在中,在中,,,,,由余弦定理可得,解得或 (舍去),故选:B.变式1、(2020山东新泰市第一中学高三月考)某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-752298.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022春九年级数学下册 第五章 圆6 直线和圆的位置关系第1课时直线和圆的位置关系习题课件 鲁教版五四制.pptx
