分享
分享赚钱 收藏 举报 版权申诉 / 37

类型3.6 直线与圆的位置关系及切线的判定与性质【十大题型】(举一反三)(北师大版)(教师版).docx

  • 上传人:a****
  • 文档编号:772956
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:37
  • 大小:688.64KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    十大题型 3.6 直线与圆的位置关系及切线的判定与性质【十大题型】举一反三北师大版教师版 直线 位置 关系 切线 判定 性质 题型 举一反三 北师大 教师版
    资源描述:

    1、专题3.6 直线与圆的位置关系及切线的判定与性质【十大题型】【北师大版】【题型1 已知距离及半径判断直线与圆的位置关系】2【题型2 已知直线与圆的位置关系确定取值范围】4【题型3 根据直线与圆的位置关系确定交点个数】6【题型4 利用直线与圆的位置关系求最值】9【题型5 定义法判断切线】13【题型6 切线的判定(连半径证垂直)】15【题型7 切线的判定(作垂直证半径)】19【题型8 利用切线的性质求线段长度】23【题型9 利用切线的性质求角度】27【题型10 利用切线的判定与性质的综合运用】30【知识点1 直线与圆的位置关系】直线与圆的位置关系设的半径为,圆心到直线的距离为则有:相交:直线和圆有

    2、两个公共点直线和相交相切:直线和圆只有一个公共点直线和相切相离:直线和圆没有公共点直线和相离【题型1 已知距离及半径判断直线与圆的位置关系】【例1】(2022春金山区校级月考)已知同一平面内有O和点A与点B,如果O的半径为6cm,线段OA10cm,线段OB6cm,那么直线AB与O的位置关系为()A相离B相交C相切D相交或相切【分析】根据点与圆的位置关系的判定方法进行判断【解答】解:O的半径为6cm,线段OA10cm,线段OB6cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,点A在O外点B在O上,直线AB与O的位置关系为相交或相切,故选:D【变式1-1】(2022秋韶关期

    3、末)已知O的半径等于3,圆心O到直线l的距离为5,那么直线l与O的位置关系是()A直线l与O相交B直线l与O相切C直线l与O相离D无法确定【分析】根据“若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离”即可得到结论【解答】解:O的半径等于3,圆心O到直线l的距离为5,35,直线l与O相离故选:C【变式1-2】(2022秋川汇区期末)在平面直角坐标系中,原点为O,点P在函数y=14x2-1的图象上,以点P为圆心,以OP为半径的圆与直线y2的位置关系是()A相离B相切C相交D三种情况均有可能【分析】设P(t,14t21),利用两点间的距离公式计算出OP=14t2+1,再计算出

    4、P点到直线y2的距离为14t2+1,然后根据直线与圆的位置关系的判定方法可得到圆与直线y2相切【解答】解:设P(t,14t21),OP=t2+(14t2-1)2=(14t2+1)2=14t2+1,抛物线的顶点坐标为(0,1),P点在直线y2的上方,P点到直线y2的距离为14t21(2)=14t2+1,P点到直线y2的距离等于圆的半径,以点P为圆心,以OP为半径的圆与直线y2的位置关系是相切故选:B【变式1-3】(2022秋自贡期末)如图,O的半径为5,圆心O到一条直线的距离为2,则这条直线可能是()Al1Bl2Cl3Dl4【分析】利用直线与圆的位置的判定方法进行判断【解答】解:直线l1与O相切

    5、,圆心O到一条直线l1的距离为5,直线l2与O相离,圆心O到一条直线l2的距离大于5,直线l3与l4与O相交,圆心O到一条直线l3和直线l4的距离都小于5,而圆心O到直线l3的距离较小,圆心O到一条直线的距离为2,这条直线可能是直线l3故选:C【题型2 已知直线与圆的位置关系确定取值范围】【例2】(2022秋北仑区期末)O的半径为5,若直线l与该圆相交,则圆心O到直线l的距离可能是()A3B5C6D10【分析】根据直线l和O相交dr,即可判断【解答】解:O的半径为5,直线l与O相交,圆心D到直线l的距离d的取值范围是0d5,故选:A【变式2-1】(2022松江区校级模拟)如图,已知RtABC中

    6、,C90,AC3,BC4,如果以点C为圆心的圆与斜边AB有公共点,那么C的半径r的取值范围是()A0r125B125r3C125r4D3r4【分析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案【解答】解:过点C作CDAB于点D,AC3,BC4如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,AB5,当直线与圆相切时,dr,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,CDABACBC,CDr=125,当直线与圆如图所示也可以有交点,125r4故选:C【变式2-2】(2022秋丛台区校级期中)已知矩形ABCD中,AB4,BC3,以点

    7、B为圆心r为半径作圆,且B与边CD有唯一公共点,则r的取值范围为()A3r4B3r5C3r4D3r5【分析】由于BDABBC,根据点与圆的位置关系得到3r5【解答】解:矩形ABCD中,AB4,BC3,BDAC=AB2+BC2=5,ADBC3,CDAB4,以点B为圆心作圆,B与边CD有唯一公共点,B的半径r的取值范围是:3r5;故选:D【变式2-3】(2022秋丛台区校级期中)以坐标原点O为圆心,作半径为4的圆,若直线yx+b与O相交,则b的取值范围是()A0b22B42b42C22b22D42b42【分析】求出直线yx+b与圆相切,且函数经过一、二、四象限,和当直线yx+b与圆相切,且函数经过

    8、二、三、四象限时b的值,则相交时b的值在相切时的两个b的值之间【解答】解:当直线yx+b与圆相切,且函数经过一、二、四象限时,如图在yx+b中,令x0时,yb,则与y轴的交点是B(0,b),当y0时,xb,则与y轴的交点是A(b,0),则OAOBb,即OAB是等腰直角三角形,在RtABC中,AB=OA2+OB2=b2+b2=2b,连接圆心O和切点C,则OC4,OCAB,SAOB=12OAOB=12ABOC,4=OAOBAB=bb2b,则b42;同理,当直线yx+b与圆相切,且函数经过二、三、四象限时,b42;则若直线yx+b与O相交,则b的取值范围是42b42故选:D【题型3 根据直线与圆的位

    9、置关系确定交点个数】【例3】(2022秋武汉期末)已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是()A0B1C2D无法确定【分析】利用直线与圆的位置关系的判断方法得到直线l和O相离,然后根据相离的定义对各选项进行判断【解答】解:O的半径等于5,圆心O到直线l的距离为6,即圆心O到直线l的距离大于圆的半径,直线l和O相离,直线l与O没有公共点故选:A【变式3-1】(2022秋武汉期末)直角ABC,BAC90,AB8,AC6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A0B1C2D不能确定【分析】根据直线和圆的位置关系与数量之间的联系进行判断若dr

    10、,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离【解答】解:BAC90,AB8,AC6,BC10,斜边上的高为:ABACBC=4.8,d4.8cmrcm4.8cm,圆与该直线BC的位置关系是相切,交点个数为1,故选:B【变式3-2】(2022武汉模拟)一个圆的半径是5cm,如果圆心到直线距离是4cm,那么这条直线和这个圆的公共点的个数是()个A0B1C2D0或1或2【分析】根据当圆的半径r圆心到直线的距离d时,直线与圆相交,即可得出直线l和这个圆的公共点的个数【解答】解:圆的半径是5cm,如果圆心到直线距离是4cm,rd,直线与圆相交,这条直线和这个圆的公共点的个数为2故选:C

    11、【变式3-3】(2022秋沭阳县期中)如图,在ABC中,C90,AC4,BC3,以点C为圆心,r为半径画圆(1)当r2.4时,C与边AB相切;(2)当r满足3r4或r2.4时,C与边AB只有一个交点;(3)随着r的变化,C与边AB的交点个数还有哪些变化?写出相应的r的值或取值范围【分析】(1)当C与边AB相切时,则dr,由此求出r的值即可;(2)根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案;(3)随着r的变化,C与边AB的交点个数由0个、1个、2个三种情况【解答】解:(1)过点C作CDAB于点D,AC3,BC4如果以点C为圆心,r为半径的圆与斜边

    12、AB只有一个公共点,AB5,当直线与圆相切时,dr,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,如图1,CDABACBC,CDr2.4,故答案为:r2.4(2)当直线与圆相切时,即dr2.4,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,当直线与圆如图所示也可以有一个交点,如图2,3r4,故答案为:3r4或r2.4;(3)如图3,当0r2.4时,圆C与边AB有0个交点;如图1,当r2.4时,圆C与边AB有1个交点;如图4,当2.4r3时,圆C与边AB有2个交点;如图2,当3r4时,圆C与边AB有1个交点;如图5,当r4时,圆C与边AB有0个交点;综上所述,当0r2.4或r

    13、4时,圆C与边AB有0个交点;当3r4或r2.4时,圆C与边AB有1个交点;当2.4r3时,圆C与边AB有2个交点【题型4 利用直线与圆的位置关系求最值】【例4】(2022秋常熟市期中)如图,直线y=34x+3与x轴、y轴分别交于A,B两点,点P是以C(1,0)为圆心,1为半径的圆上任意一点,连接PA,PB,则PAB面积的最小值是()A5B10C15D20【分析】作CHAB于H交O于E、F当点P与E重合时,PAB的面积最小,求出EH、AB的长即可解决问题【解答】解:作CHAB于H交O于E、FC(1,0),直线AB的解析式为y=34x+3,直线CH的解析式为y=-43x+43,由 y=-43x+

    14、43y=34x+3解得x=-45y=125,H(-45,125),CH=(1+45)2+(125)2=3,A(4,0),B(0,3),OA4,OB3,AB5,EH312,当点P与E重合时,PAB的面积最小,最小值=12525,故选:A【变式4-1】(2022秋凉山州期末)点A是半径为2的O上一动点,点O到直线MN的距离为3点P是MN上一个动点在运动过程中若POA90,则线段PA的最小值是 13【分析】根据勾股定理用OP表示出PA,根据垂线段最短解答即可【解答】解:POA90,PA=OA2+OP2=4+OP2,当OP最小时,PA取最小值,由题意得:当OPMN时,OP最小,最小值为3,PA的最小值

    15、为:4+32=13,故答案为:13【变式4-2】(2022乐亭县一模)如图,O的半径是5,点A在O上P是O所在平面内一点,且AP2,过点P作直线l,使lPA(1)点O到直线l距离的最大值为7;(2)若M,N是直线l与O的公共点,则当线段MN的长度最大时,OP的长为21【分析】(1)如图1,当点P在圆外且O,A,P三点共线时,点O到直线l距离的最大,于是得到结论;(2)如图2,根据已知条件得到线段MN是O的直径,根据勾股定理即可得到结论【解答】解:(1)如图1,lPA,当点P在圆外且O,A,P三点共线时,点O到直线l的距离最大,最大值为AO+AP5+27;(2)如图2,M,N是直线l与O的公共点

    16、,当线段MN的长度最大时,线段MN是O的直径,lPA,APO90,AP2,OA5,OP=OA2-PA2=21,故答案为:7,21【变式4-3】(2022广汉市模拟)在RtABC中,C90,AC10,BC12,点D为线段BC上一动点以CD为O直径,作AD交O于点E,连BE,则BE的最小值为()A6B8C10D12【分析】连接CE,可得CEDCEA90,从而知点E在以AC为直径的Q上,继而知点Q、E、B共线时BE最小,根据勾股定理求得QB的长,即可得答案【解答】解:如图,连接CE,CEDCEA90,点E在以AC为直径的Q上,AC10,QCQE5,当点Q、E、B共线时BE最小,BC12,QB=BC2

    17、+QC2=13,BEQBQE8,故选:B【知识点2 切线的判定】(1)切线判定:经过半径的外端并且垂直于这条半径的直线是圆的切线 和圆只有一个公共点的直线是圆的切线(定义法) 如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:知道直线和圆有公共点时,连半径,证垂直;不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径【题型5 定义法判断切线】【例5】(2022淮安模拟)下列直线中,一定是圆的切线的是()A过半径外端的直线B与圆心的距离等于该圆半径的直线C垂直于圆的半径的直线D与圆有公共点的直线【分析】根据选项举出反例图形即可判断A、C、D;根据切线的判

    18、定即可判断B【解答】解:切线的判定定理有:经过半径的外端且垂直于这条半径的直线是圆的切线,与圆心的距离等于该圆的半径的直线是圆的切线,A、如图EF不是O的切线,故本选项错误;B、与圆心的距离等于该圆的半径的直线是圆的切线,故本选项正确;C、如图,EF半径OA,但EF不是O的切线,故本选项错误;D、如上图,EFO有公共点,但EF不是O的切线,故本选项错误;故选:B【变式5-1】(2022秋嘉定区期末)下列四个选项中的表述,正确的是()A经过半径上一点且垂直于这条半径的直线是圆的切线B经过半径的端点且垂直于这条半径的直线是圆的切线C经过半径的外端且垂直于这条半径的直线是圆的切线D经过一条弦的外端且

    19、垂直于这条弦的直线是圆的切线【分析】根据切线的判定对各个选项进行分析,从而得到答案【解答】解:由切线的判定定理可知:经过半径外端点且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C选项正确,故选:C【变式5-2】(2022秋东台市校级月考)下列命题:(1)垂直于半径的直线是圆的切线(2)与圆只有一个公共点的直线是圆的切线(3)到圆心距离等于半径的直线是圆的切线(4)和三角形三边所在直线都相切的圆有且只有一个其中不正确的有()A2个B3个C4个D1个【分析】利用切线的性质进行判断后即可得到答案【解答】解:(1)过半径的外端且垂直于半径的直线是圆的切线,原命题错误(2)与圆只有一个公共点

    20、的直线是圆的切线,原命题正确(3)到圆心距离等于半径的直线是圆的切线,正确(4)和三角形三边所在直线都相切的圆有且只有四个,原命题错误故选:A【变式5-3】(2022秋慈溪市期末)已知O的半径为5,直线EF经过O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与O相切的是()AOP5BOEOFCO到直线EF的距离是4DOPEF【分析】根据切线的判定定理可求得需要满足和条件,即可求得答案【解答】解:点P在O上,只需要OPEF即可,故选:D【题型6 切线的判定(连半径证垂直)】【例6】(2022顺德区一模)如图,A,B,C,D是O上的四个点,ADBBDC60,过点A作AEBC交CD延长线于

    21、点E(1)求ABC的大小;(2)证明:AE是O的切线【分析】(1)根据圆周角定理得到CABBDC60,ACBADB60,根据等边三角形的性质解答即可;(2)连接AO并延长交BC于F,根据垂径定理的推论得到AFBC,根据平行线的性质得到AFAE,根据切线的判定定理证明结论【解答】(1)解:由圆周角定理得:CABBDC60,ACBADB60,ABC为等边三角形,ABC60;(2)证明:连接AO并延长交BC于F,ABAC,AB=AC,AFBC,AFAE,OA是O的半径,AE是O的切线【变式6-1】(2022昭平县一模)如图,AB是O的弦,OPAB交O于C,OC2,ABC30(1)求AB的长;(2)若

    22、C是OP的中点,求证:PB是O的切线【分析】(1)连接OA、OB,根据圆周角定理得到AOC2ABC60,则OAD30,所以OD=12OA1,AD=3OD=3,再根据垂径定理得ADBD,所以AB23;(2)由(1)BOC60,则OCB为等边三角形,所以BCOBOC,OBCOCB60,而CPCOCB,则CBPP,可计算出CBP30,所以OBPOBC+CBP90,于是根据切线的判定定理得PB是O的切线【解答】(1)解:连接OA、OB,如图,ABC30,OPAB,AOC60,OAD30,OD=12OA=1221,AD=3OD=3,又OPAB,ADBD,AB23;(2)证明:由(1)BOC60,而OCO

    23、B,OCB为等边三角形,BCOBOC,OBCOCB60,C是OP的中点,CPCOCB,CBPP,而OCBCBP+P,CBP30OBPOBC+CBP90,OBBP,PB是O的切线【变式6-2】(2022春朝阳区校级月考)如图,在RtABC中,C90,AD平分BAC交BC于点D,O为AB上一点,经过点A,D的圆O分别交AB,AC于点E,F,连接EF求证:BC是圆O的切线【分析】连接OD,根据等腰三角形的性质和角平分线的定义得出CADODA,根据平行线的判定得出ODAC,求出ODBC,再根据切线的判定推出即可【解答】证明:连接OD,ODOA,OADODA,AD平分BAC,CADOAD,CADODA,

    24、ODAC,C90,ACBC,ODBC,OD过圆心O,BC是圆O的切线【变式6-3】(2022秋武夷山市期末)如图,点P是O的直径AB延长线上的一点(PBOB),点E是线段OP的中点在直径AB上方的圆上作一点C,使得ECEP求证:PC是O的切线【分析】连接OC,根据线段中点的定义得到OEEP,求得OEECEP,得到COEECO,ECPP,根据切线的判定定理即可得到结论【解答】证明:连接OC,点E是线段OP的中点,OEEP,ECEP,OEECEP,COEECO,ECPP,COE+ECO+ECP+P180,ECO+ECP90,OCPC,OC是O的半径,PC是O的切线【题型7 切线的判定(作垂直证半径

    25、)】【例7】(2022武汉模拟)如图,在RtABC中,B90,BAC的平分线交BC于点D,E为AB上的一点,DEDC,以D为圆心,DB长为半径作D,AB5,EB3(1)求证:AC是D的切线;(2)求线段AC的长【分析】(1)过点D作DFAC于F,求出BDDF等于半径,得出AC是D的切线(2)先证明BDEDCF(HL),根据全等三角形对应边相等及切线的性质的ABAF,得出AB+EBAC【解答】证明:(1)过点D作DFAC于F;AB为D的切线,B90ABBCAD平分BAC,DFACBDDFAC与D相切;(2)在BDE和DCF中;BDDF,DEDC,RtBDERtDCF(HL),EBFCABAF,A

    26、B+EBAF+FC,即AB+EBAC,AC5+38【变式7-1】(2022秋滨海县期末)如图,以点O为圆心作圆,所得的圆与直线a相切的是()A以OA为半径的圆B以OB为半径的圆C以OC为半径的圆D以OD为半径的圆【分析】根据直线与圆的位置关系的判定方法进行判断【解答】解:ODa于D,以点O为圆心,OD为半径的圆与直线a相切故选:D【变式7-2】(2022椒江区一模)如图,ABC为等腰三角形,O是底边BC的中点,腰AB与O相切于点D求证:AC是O的切线【分析】过点O作OEAC于点E,连接OD,OA,根据切线的性质得出ABOD,根据等腰三角形三线合一的性质得出AO是BAC的平分线,根据角平分线的性

    27、质得出OEOD,从而证得结论【解答】证明:过点O作OEAC于点E,连接OD,OA,AB与O相切于点D,ABOD,ABC为等腰三角形,O是底边BC的中点,AO是BAC的平分线,OEOD,即OE是O的半径,圆心到直线的距离等于半径,AC是O的切线【变式7-3】(2022秋丹江口市期中)如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的O与BC相切于点E(1)求证:CD是O的切线;(2)若正方形ABCD的边长为10,求O的半径【分析】(1)首先连接OE,并过点O作OFCD,由OA长为半径的O与BC相切于点E,可得OEOA,OEBC,然后由AC为正方形ABCD的对角线,根据角平分线的性

    28、质,可证得OFOEOA,即可判定CD是O的切线;(2)由正方形ABCD的边长为10,可求得其对角线的长,然后由设OAr,可得OEECr,由勾股定理求得OC=2r,则可得方程r+2r102,继而求得答案【解答】(1)证明:连接OE,并过点O作OFCDBC切O于点E,OEBC,OEOA,又AC为正方形ABCD的对角线,ACBACD,OFOEOA,即:CD是O的切线(2)解:正方形ABCD的边长为10,ABBC10,B90,ACB45,AC=AB2+BC2=102,OEBC,OEEC,设OAr,则OEECr,OC=OE2+EC2=2r,OA+OCAC,r+2r102,解得:r20102O的半径为:2

    29、0102【知识点3 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:经过圆心且垂直于切线的直线必经过切点 经过切点且垂直于切线的直线必经过圆心【题型8 利用切线的性质求线段长度】【例8】(2022新平县模拟)如图,已知AB是O的直径,CD是O的切线,点C是切点,弦CFAB于点E,连接AC(1)求证:AC平分DCF;(2)若ADCD,BE2,CF8,求AD的长【分析】(1)连接OC,根据切线的性质得到OCD90,根据等腰三角形的性质得到ACOCAE,根据等角的余角相等可得出结论;(2)根据垂径定理得到CE=12CF4,根据勾股定理求出O的半径,根据角平分线的性质定

    30、理解答即可【解答】(1)证明:连接OC,CD切O于点C,OCD90,ACD+ACO90CFAB,AEC90,ACF+CAE90OAOC,ACOCAE,ACDACF;(2)解:由(1)可知,ACDACFCFAB,CF8,CE=12CF4,设O的半径为r,则OEr3,在RtOEC中,OC2OE2+CE2,即r2(r2)2+42,解得:r5,AEABBE1028,ACDACF,ADCD,CFAB,ADAE8【变式8-1】(2022泸县一模)如图,AB是O的切线,A为切点,AC是O的弦,过O作OHAC于点H若OH3,AB12,BO13,求:O的半径和AC的长【分析】利用切线的性质得OAB90,则根据勾

    31、股定理可计算出OA5,再根据垂径定理得到AHCH,接着利用勾股定理计算出AH,从而得到AC的长【解答】解:AB为切线,OAAB,OAB90,在RtOAB中,OA=OB2-AB2=132-122=5,OHAC,AHCH,在RtOAH中,AH=OA2-OH2=52-32=4,AC2AH8,答:O的半径为5,AC的长为8【变式8-2】(2022建邺区一模)如图,AB、CD是O的切线,B、D为切点,AB2,CD4,AC10若A+C90,则O的半径是4【分析】连接OB,OD,根据切线的性质得到OBEODE90,延长AB,CD交于E,求得AEC90,根据正方形的性质得到BEDEOB,设O的半径是r,根据勾

    32、股定理即可得到结论【解答】解:连接OB,OD,AB、CD是O的切线,B、D为切点,OBEODE90,延长AB,CD交于E,A+C90,AEC90,AECOBEODE90,四边形ODEB是矩形,OBOD,四边形ODEB是正方形,BEDEOB,设O的半径是r,AEr+2,CEr+4,AE2+CE2AC2,(r+2)2+(r+4)2102,解得:r4(负值舍去),O的半径是4,故答案为:4【变式8-3】(2022新抚区校级三模)如图,ACD内接于O,AB是O的切线,C45,B30AD4,则AB长为()A4B22C23D26【分析】如图,连接OA、OD,构造等腰直角AOD和直角AOB首先利用勾股定理求

    33、得OA的长度,然后通过解直角AOB求得边AB的长度【解答】解:如图,连接OA、OD,C45AOD2C90又OAOD,AD4,AD22OA216,则OA22又AB是O的切线,OAB90B30,OA22,AB=3OA26故选:D【题型9 利用切线的性质求角度】【例9】(2022红桥区三模)已知PA、PB是O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交O于点D(I)如图,若AOP65,求C的大小;(II)如图,连接BD,若BDAC,求C的大小【分析】()根据切线的性质和三角形的内角和解答即可;()连接OB,设AOP为x,利用三角形内角和解答即可【解答】解:()连接BO,P

    34、A、PB是O的切线,APOBPO,PAAO,PBOB,AOP65,APO906525,BPOAPO25,AOPBPO+C,CAOPBPO652540,()连接OB,设AOPx,PA、PB是O的切线,APOBPOx,PAAO,PBOB,APO90AOP90x,BOP90BPO90x,BOC180AOPBOP1802x,OCB90BOC902x,OCBD,DBPC902x,OBD2x,OBOD,ODBOBD2x,OBD+ODB+DOB180,x30,C902x30【变式9-1】(2022秋香洲区期末)如图,PA、PB是O的两条切线,A、B是切点,AC是O的直径,BAC35,求P的度数【分析】根据题

    35、意可以求得OAP和OBP的度数,然后根据BAC35,即可求得P的度数【解答】解:PA、PB是O的两条切线,A、B是切点,AC是O的直径,OAPOBP90,BAC35,OAOB,BACOBA35,PABPBA55,P180PABPBA70,即P的度数是70【变式9-2】(2022老河口市模拟)PA,PB是O的切线,A,B是切点,点C是O上不与A,B重合的一点,若APB70,则ACB的度数为 55或125【分析】根据切线的性质得到OAP90,OBP90,再根据四边形内角和得到AOB110,然后根据圆周角定理和圆内接四边形的性质求ACB的度数【解答】解:PA,PB是O的两条切线,OAPA,OBPB,

    36、OAP90,OBP90,APB70,AOB360909070110,当点C在劣弧AB上,则ACB=12AOB55,当点C在优弧AB上,则ACB18055125则ACB的度数为55或125故答案为:55或125【变式9-3】(2022曲阜市二模)已知BC是O的直径,AD是O的切线,切点为A,AD交CB的延长线于点D,连接AB,AO()如图,求证:OACDAB;()如图,ADAC,若E是O上一点,求E的大小【分析】()先由切线和直径得出直角,再用同角的余角相等即可;()由等腰三角形的性质和圆的性质直接先判断出ABC2C,即可求出C【解答】解:()AD是O的切线,切点为A,DAAO,DAO90,DA

    37、B+BAO90,BC是O的直径,BAC90,BAO+OAC90,OACDAB,()OAOC,OACC,ADAC,DC,OACD,OACDAB,DABD,ABCD+DAB,ABC2D,DC,ABC2C,BAC90,ABC+C90,2C+C90,C30,EC30【题型10 利用切线的判定与性质的综合运用】【例10】(2022五华区三模)如图,在ABC中,点D是AC边上一点,且ADAB,以线段AB为直径作O,分别交BD,AC于点E,点F,BAC2CBD(1)求证:BC是O的切线;(2)若CD2,BC4,求点B到AC的距离【分析】(1)连接AE,由圆周角定理得到AEB90,由等腰三角形的性质得到BAE

    38、DAE,进而征得BAECBD,得到ABE+CBDABC90,根据切线的判定即可证得BC是O的切线;(2)连接BF,可得AFAC,在RtABC中,根据勾股定理求出AB3,AC5,由三角形的面积公式即可求出BF【解答】(1)证明:连接AE,线段AB为O的直径,AEB90,AEBD,BAE+ABE90,ADAB,BAEDAE,BAC2BAE,BAC2CBD,BAECBD,ABE+CBDABC90,ABBC,AB为O的直径,BC是O的切线;(2)解:连接BF,线段AB为O的直径,AFB90,AFAC,在RtABC中,AB2+BC2AC2,BC4,ACAD+CDAB+2,AB2+42(AB+2)2,AB

    39、3,AC5,SABC=12ABBC=12ACBF,BF=ABBCAC=345=125,即点B到AC的距离为125【变式10-1】(2022邵阳模拟)如图,AC是O的直径,OD与O相交于点B,DABACB(1)求证:AD是O的切线(2)若ADB30,DB2,求直径AC的长度【分析】(1)根据圆周角定理得出ABC90,求出ACB+CAB90,求出OAD90,再根据切线的判定得出即可;(2)根据含30角的直角三角形的性质得出OA=12OD,求出OA,再求出答案即可【解答】(1)证明:AC是O的直径,ABC90,ACB+CAB90,又ACBDAB,DAB+CAB90,即OAD90,OA是O的半径,AD

    40、是O的切线;(2)解:由(1)可知OAD90,ADB30,OA=12OD=12(OB+BD),OAOB,BD2,OA2,AC2OA4【变式10-2】(2022衡阳)如图,AB为O的直径,过圆上一点D作O的切线CD交BA的延长线于点C,过点O作OEAD交CD于点E,连接BE(1)直线BE与O相切吗?并说明理由;(2)若CA2,CD4,求DE的长【分析】(1)连接OD,理由切线的性质可得ODE90,然后利用平行线和等腰三角形的性质可得OE平分DOB,从而可得DOEEOB,进而可证DOEBOE,最后利用全等三角形的性质即可解答;(2)设O的半径为r,先在RtODC中,利用勾股定理求出r的长,再利用(

    41、1)的结论可得DEBE,最后在RtBCE中,利用勾股定理进行计算即可解答【解答】解:(1)直线BE与O相切,理由:连接OD,CD与O相切于点D,ODE90,ADOE,ADODOE,DAOEOB,ODOA,ADODAO,DOEEOB,ODOB,OEOE,DOEBOE(SAS),OBEODE90,OB是O的半径,直线BE与O相切;(2)设O的半径为r,在RtODC中,OD2+DC2OC2,r2+42(r+2)2,r3,AB2r6,BCAC+AB2+68,由(1)得:DOEBOE,DEBE,在RtBCE中,BC2+BE2CE2,82+BE2(4+DE)2,64+DE2(4+DE)2,DE6,DE的长

    42、为6【变式10-3】(2022盘锦模拟)如图,ABC内接于O,ABC45,连接AO并延长交O于点D,连接BD,过点C作CEAD与BA的延长线交于点E(1)求证:CE与O相切;(2)若AD4,D60,求线段AB,BC的长【分析】(1)连接OC,根据圆周角定理得AOC90,再根据ADEC,可得OCE90,从而证明结论;(2)过点A作AFEC交EC于F,由AD是圆O的直径,得ABD90,又AD4,D60,即得AB=3BD23,根据ABC45,知ABF是等腰直角三角形,AFBF=22AB=6,又AOC是等腰直角三角形,OAOC2,得AC22,故CF=AC2-AF2=2,从而BCBF+CF=6+2【解答】(1)证明:连接OC,如图:ABC45,AOC90,ADEC,AOC+OCE180,OCE90,OCCE,OC为半径,CE是O的切线;(2)解:过点A作AFBC于F,如图:AD是圆O的直径,ABD90,AD4,D60,BAD30,BD=12AD2,AB=3BD23;ABC45,ABF是等腰直角三角形,AFBF=22AB=2223=6,AOC是等腰直角三角形,OAOC2,AC22,CF=AC2-AF2=(22)2-(6)2=2,BCBF+CF=6+2答:线段AB的长为23,线段BC的长为6+2

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:3.6 直线与圆的位置关系及切线的判定与性质【十大题型】(举一反三)(北师大版)(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-772956.html
    相关资源 更多
  • 人教版一年级上册数学 期中测试卷含解析答案.docx人教版一年级上册数学 期中测试卷含解析答案.docx
  • 人教版一年级上册数学 期中测试卷含精品答案.docx人教版一年级上册数学 期中测试卷含精品答案.docx
  • 人教版一年级上册数学 期中测试卷含答案解析.docx人教版一年级上册数学 期中测试卷含答案解析.docx
  • 人教版一年级上册数学 期中测试卷含答案下载.docx人教版一年级上册数学 期中测试卷含答案下载.docx
  • 人教版一年级上册数学 期中测试卷含答案.docx人教版一年级上册数学 期中测试卷含答案.docx
  • 人教版一年级上册数学 期中测试卷含下载答案.docx人教版一年级上册数学 期中测试卷含下载答案.docx
  • 人教版一年级上册数学 期中测试卷可打印.docx人教版一年级上册数学 期中测试卷可打印.docx
  • 人教版一年级上册数学 期中测试卷及解析答案.docx人教版一年级上册数学 期中测试卷及解析答案.docx
  • 人教版一年级上册数学 期中测试卷及精品答案.docx人教版一年级上册数学 期中测试卷及精品答案.docx
  • 人教版一年级上册数学 期中测试卷及答案(考点梳理).docx人教版一年级上册数学 期中测试卷及答案(考点梳理).docx
  • 人教版一年级上册数学 期中测试卷及答案(网校专用).docx人教版一年级上册数学 期中测试卷及答案(网校专用).docx
  • 人教版一年级上册数学 期中测试卷及答案(精选题).docx人教版一年级上册数学 期中测试卷及答案(精选题).docx
  • 人教版一年级上册数学 期中测试卷及答案(精品).docx人教版一年级上册数学 期中测试卷及答案(精品).docx
  • 人教版一年级上册数学 期中测试卷及答案(有一套).docx人教版一年级上册数学 期中测试卷及答案(有一套).docx
  • 人教版一年级上册数学 期中测试卷及答案(最新).docx人教版一年级上册数学 期中测试卷及答案(最新).docx
  • 人教版一年级上册数学 期中测试卷及答案(易错题).docx人教版一年级上册数学 期中测试卷及答案(易错题).docx
  • 人教版一年级上册数学 期中测试卷及答案(新).docx人教版一年级上册数学 期中测试卷及答案(新).docx
  • 人教版一年级上册数学 期中测试卷及答案(必刷).docx人教版一年级上册数学 期中测试卷及答案(必刷).docx
  • 人教版一年级上册数学 期中测试卷及答案(夺冠).docx人教版一年级上册数学 期中测试卷及答案(夺冠).docx
  • 人教版一年级上册数学 期中测试卷及答案(夺冠系列).docx人教版一年级上册数学 期中测试卷及答案(夺冠系列).docx
  • 人教版一年级上册数学 期中测试卷及答案(历年真题).docx人教版一年级上册数学 期中测试卷及答案(历年真题).docx
  • 人教版一年级上册数学 期中测试卷及答案(典优).docx人教版一年级上册数学 期中测试卷及答案(典优).docx
  • 人教版一年级上册数学 期中测试卷及答案(全国通用).docx人教版一年级上册数学 期中测试卷及答案(全国通用).docx
  • 人教版一年级上册数学 期中测试卷及答案(全优).docx人教版一年级上册数学 期中测试卷及答案(全优).docx
  • 人教版一年级上册数学 期中测试卷及答案解析.docx人教版一年级上册数学 期中测试卷及答案解析.docx
  • 人教版一年级上册数学 期中测试卷及答案参考.docx人教版一年级上册数学 期中测试卷及答案参考.docx
  • 人教版一年级上册数学 期中测试卷及答案免费下载.docx人教版一年级上册数学 期中测试卷及答案免费下载.docx
  • 人教版一年级上册数学 期中测试卷及答案免费.docx人教版一年级上册数学 期中测试卷及答案免费.docx
  • 人教版一年级上册数学 期中测试卷及答案下载.docx人教版一年级上册数学 期中测试卷及答案下载.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1