《创新设计》2016-2017学年高二数学人教A必修5学案:1.2 应用举例(二) WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2016-2017学年高二数学人教A必修5学案:1.2 应用举例二 WORD版含答案 创新 设计 2016 2017 学年 高二数 学人 必修 1.2 应用 举例 WORD 答案
- 资源描述:
-
1、12 应用举例(二) 学习目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.2.巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯.3.进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力知识链接现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?要点一测量仰角求高度问题例1如图所示,A、B是水平面上的两个点,相距800 m,在A点测得山顶C的仰角为45,BAD120,又在B点测得ABD45,其中D点是点C到水平面的垂足,求山高CD.解由于CD平面ABD,CAD45,所以
2、CDAD.因此只需在ABD中求出AD即可,在ABD中,BDA1804512015,由,得AD800(1) (m)即山的高度为800(1) m.规律方法在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解和高度有关的问题往往涉及直角三角形的求解跟踪演练1如图,地平面上有一旗杆OP,为了测得它的高度h,在地面上选一基线AB,AB20 m,在A点处测得P点仰角OAP30,在B点处测得P点的仰角OBP45,又测得AOB60,求旗杆的高度h.(结果保留两个有效数字)解在RtAOP中,OAP30,OPh,OAOPh.在RtBOP
3、中,OBP45,OBOPh.在AOB中,AB20,AOB60,由余弦定理得AB2OA2OB22OAOBcos 60,即202(h)2h22hh,解得h2176.4,h13(m)答旗杆高度约为13 m.要点二测量俯角求高度问题例2如图所示,在山顶铁塔上B处测得地面上一点A的俯角为,在塔底C处测得A处的俯角为.已知铁塔BC部分的高为h,求出山高CD.解在ABC中,BCA90,ABC90,BAC,CAD.根据正弦定理得,即,AC.在RtACD中,CDACsinCADACsin .答山的高度为.规律方法利用正弦定理和余弦定理来解题时,要学会审题及根据题意画示意图,要懂得从所给的背景资料中进行加工、抽取
4、主要因素,进行适当的简化跟踪演练2江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45和30,而且两条船与炮台底部连线成30角,则两条船相距_m.答案30解析设两条船所在位置分别为A、B两点,炮台底部所在位置为C点,在ABC中,由题意可知AC30,BC30,C30,AB2(30)230223030cos 30900,所以AB30.要点三测量方位角求高度问题例3如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60,再由点C沿北偏东15方向走10 m到位置D,测得BDC45,求塔AB的高度解在BCD中,CD10
5、,BDC45,BCD1590105,DBC30,由正弦定理,得,BC10.在RtABC中,tan 60,ABBCtan 6010.答塔AB的高度为10 m.规律方法 利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化跟踪演练3一船以每小时15 km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4 h后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔的距离为_ km.答案30解析如图,由已知条件,得AC60 km,BAC30,ACB105,ABC45.由正弦定理得BC30(km)1已知两座灯塔A,B与
6、海洋观察站C的距离相等,灯塔A在观察站C的北偏东40,灯塔B在观察站C的南偏东60,则灯塔A在灯塔B的()A北偏东10 B北偏西10C南偏东10 D南偏西10答案B解析如右图,因ABC为等腰三角形,所以CBA(18080)50,605010,故选B.2从高出海平面h米的小岛看正东方向有一只船俯角为30,看正南方向有一只船俯角为45,则此时两船间的距离为()A2h米 B.h米C.h米 D2h米答案A解析如图所示,BCh,ACh,AB2h(米)3甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为30,则甲、乙两楼的高分别是_. 答案20 m, m解析甲楼的高为20tan
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-787987.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
