《创新设计》2016-2017学年高二数学人教A必修5学案:3.4.2 基本不等式的应用 WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2016-2017学年高二数学人教A必修5学案:3.4.2 基本不等式的应用 WORD版含答案 创新
- 资源描述:
-
1、第2课时基本不等式的应用学习目标1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题 知识链接1已知x,y都是正数,若xys(和为定值),那么xy有最大值还是最小值?如何求?答xy有最大值由基本不等式,得sxy2,所以xy,当xy时,积xy取得最大值.2已知x,y都是正数,若xyp(积为定值),那么xy有最大值还是最小值?如何求?答xy有最小值. 由基本不等式,得xy22.当xy时,xy取得最小值2.预习导引1用基本不等式求最值的结论(1)设x,y为正实数,若xys(和s为定值),则当xy时,积xy有最大值,且这个值为.(
2、2)设x,y为正实数,若xyp(积p为定值),则当xy时,和xy有最小值,且这个值为2.2基本不等式求最值的条件(1)x,y必须是正数;(2)求积xy的最大值时,应看和xy是否为定值;求和xy的最小值时,应看积xy是否为定值(3)等号成立的条件是否满足.要点一基本不等式与最值例1(1)若x0,求函数yx的最小值,并求此时x的值;(2)设0x2,求x的最小值;(4)已知x0,y0,且 1,求xy的最小值解(1)当x0时,x2 4,当且仅当x,即x24,x2时取等号函数yx(x0)在x2时取得最小值4.(2)0x0,y4x(32x)22x(32x)22.当且仅当2x32x,即x时,等号成立.函数y
3、4x(32x)(0x2,x20,xx222 26,当且仅当x2,即x4时,等号成立x的最小值为6.(4)法一x0,y0,1,xy(xy)1061016,当且仅当,又1,即x4,y12时,上式取等号故当x4,y12时,(xy)min16.法二由1,得(x1)(y9)9(定值)可知x1,y9,xy(x1)(y9)1021016,当且仅当x1y93,即x4,y12时上式取等号,故当x4,y12时,(xy)min16.规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考
4、虑等号成立的条件跟踪演练1(1)已知x0,求f(x)3x的最小值;(2)已知x0,y0,且2x8yxy,求xy的最小值解(1)x0,f(x)3x2 12,当且仅当3x,即x2时取等号f(x)的最小值为12.(2)x3,x30,y0,x80,y,xyxx(x8)102 1018.当且仅当x8,即x12时,等号成立xy的最小值是18.法二由2x8yxy0及x0,y0,得1.xy(xy)102 1018.当且仅当,即x2y12时等号成立xy的最小值是18.要点二基本不等式在实际问题中的应用例2(1)用篱笆围一个面积为100 m2的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多
5、少?(2)一段长为36 m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解(1)设矩形菜园的长为x m,宽为y m,则xy100,篱笆的长为2(xy) m.由,可得xy2,2(xy)40.等号当且仅当xy时成立,此时xy10.因此,这个矩形的长、宽都为10 m时,所用篱笆最短,最短篱笆为40 m;(2)设矩形菜园的长为x m,宽为y m,则2(xy)36,xy18,矩形菜园的面积为xy m2.由9,可得xy81,当且仅当xy,即xy9时,等号成立因此,这个矩形的长、宽都为9 m时,菜园的面积最大,最大面积为81 m2.规律方法利用基本不等式解决实际问题时
6、,一般是先建立关于目标量的函数关系,再利用基本不等式求解目标函数的最大(小)值及取最大(小)值的条件跟踪演练2某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?解设该厂每隔x天购买一次面粉,其购买量为6x吨由题意可知,面粉的保管等其他费用为36x6(x1)6(x2)619x(x1)设平均每天所支付的总费用为y1元,则y19x(x1)90061 8009x10 8092 10 80910 989(元),当且仅当9x,即x10时,等号成立该厂
7、每10天购买一次面粉,才能使平均每天所支付的总费用最少例3某国际化妆品生产企业为了占有更多的市场份额,拟在2012年英国伦敦奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3x与t1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2012年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完(1)将2012年的利润y(万元)表示为促销费t(万元)的函数(2)该企业2012年的促销费投入多少万元时,企
8、业的年利润最大?(注:利润销售收入生产成本促销费,生产成本固定费用生产费用)解(1)由题意可设3x,将t0,x1代入,得k2.x3.当年生产x万件时,年生产成本年生产费用固定费用,年生产成本为32x3323.当销售x(万件)时,年销售收入为150%t.由题意,生产x万件化妆品正好销完,由年利润年销售收入年生产成本促销费,得年利润y(t0)(2)y5050250242(万元),当且仅当,即t7时,ymax42,当促销费投入7万元时,企业的年利润最大规律方法 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答)跟踪演练3一批货物随17
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-787991.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
