《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版高考数学人教版鲁、京、津专版理一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案 步步高 2017 高考 学人 专版 一轮 复习 文档 第三 导数 及其
- 资源描述:
-
1、课时2导数与函数的极值、最值题型一用导数解决函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当2x1时,f(x)0;当1x2时,f(x)2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求函数的极值例2已知函数f(x)ax33x21(aR
2、且a0),求函数f(x)的极大值与极小值解由题设知a0,f(x)3ax26x3ax.令f(x)0得x0或.当a0时,随着x的变化,f(x)与f(x)的变化情况如下:x(,0)0(0,)(,)f(x)00f(x)极大值极小值f(x)极大值f(0)1,f(x)极小值f1.当a0时,随着x的变化,f(x)与f(x)的变化情况如下:x(,)(,0)0(0,)f(x)00f(x)极小值极大值f(x)极大值f(0)1,f(x)极小值f1.综上,f(x)极大值f(0)1,f(x)极小值f1.命题点3已知极值求参数例3(1)已知f(x)x33ax2bxa2在x1时有极值0,则ab_.(2)若函数f(x)x2x
3、1在区间(,3)上有极值点,则实数a的取值范围是()A(2,) B2,)C(2,) D2,)答案(1)7(2)C解析(1)由题意得f(x)3x26axb,则解得或经检验当a1,b3时,函数f(x)在x1处无法取得极值,而a2,b9满足题意,故ab7.(2)若函数f(x)在区间(,3)上无极值,则当x(,3)时,f(x)x2ax10恒成立或当x(,3)时,f(x)x2ax10恒成立当x(,3)时,yx的值域是2,);当x(,3)时,f(x)x2ax10,即ax恒成立,a2;当x(,3)时,f(x)x2ax10,即ax恒成立,a.因此要使函数f(x)在(,3)上有极值点,实数a的取值范围是(2,)
4、思维升华(1)求函数f(x)极值的步骤:确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值(2)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值(1)函数y2x的极大值是_(2)设f(x)ln(1x)xax2,若f(x)在x1处取得极值,则a的值为_答案(1)3(2)解析(1)y2,令y0,得x1.当x0;当x1时,y0.当x1时,y取极大值3.(2)由题意知,f
5、(x)的定义域为(1,),且f(x)2ax1,由题意得:f(1)0,则2a2a10,得a,又当a时,f(x),当0x1时,f(x)1时,f(x)0,所以f(1)是函数f(x)的极小值,所以a.题型二用导数求函数的最值例4已知aR,函数f(x)ln x1.(1)当a1时,求曲线yf(x)在点(2,f(2)处的切线方程;(2)求f(x)在区间(0,e上的最小值解(1)当a1时,f(x)ln x1,x(0,),所以f(x),x(0,)因此f(2),即曲线yf(x)在点(2,f(2)处的切线斜率为.又f(2)ln 2,所以曲线yf(x)在点(2,f(2)处的切线方程为y(ln 2)(x2),即x4y4
6、ln 240.(2)因为f(x)ln x1,所以f(x).令f(x)0,得xa.若a0,则f(x)0,f(x)在区间(0,e上单调递增,此时函数f(x)无最小值若0ae,当x(0,a)时,f(x)0,函数f(x)在区间(a,e上单调递增,所以当xa时,函数f(x)取得最小值ln a.若ae,则当x(0,e时,f(x)0,函数f(x)在区间(0,e上单调递减,所以当xe时,函数f(x)取得最小值.综上可知,当a0时,函数f(x)在区间(0,e上无最小值;当0a),当x(2,0)时,f(x)的最小值为1,则a的值等于()A. B. C. D1答案D解析由题意知,当x(0,2)时,f(x)的最大值为
7、1.令f(x)a0,得x,当0x0;当x时,f(x)0)的导函数yf(x)的两个零点为3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为e3,求f(x)在区间5,)上的最大值解(1)f(x).令g(x)ax2(2ab)xbc,因为ex0,所以yf(x)的零点就是g(x)ax2(2ab)xbc的零点,且f(x)与g(x)符号相同又因为a0,所以3x0,即f(x)0,当x0时,g(x)0,即f(x)5f(0),所以函数f(x)在区间5,)上的最大值是5e5.思维升华求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-793151.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
