《新步步高》2017版高考数学(文江苏专用)大二轮总复习与增分策略配套练习:专题八 数学思想方法 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版高考数学文江苏专用大二轮总复习与增分策略配套练习:专题八数学思想方法 WORD版含解析 步步高 2017 高考 数学 江苏 专用 二轮 复习 策略 配套 练习 专题
- 资源描述:
-
1、高考数学以能力立意,一是考查数学的基础知识,基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度,数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识,是数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类与整合思想、转化与化归思想一、函数与方程思想函数思想方程思想函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决方程思想的实质就是将所求的量设成未知数,根据题中的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求
2、得问题的解决函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的函数思想重在对问题进行动态的研究,方程思想则是在动中求解,研究运动中的等量关系例1(1)把一段长16的铁丝截成两段,分别围成两个正方形,则这两个正方形面积之和的最小值为_(2)已知椭圆C:1(ab0)的左焦点为F,若F关于直线xy0的对称点A是椭圆C上的点,则椭圆C的离心率为_答案(1)8(2)1解析(1)设截成的铁丝其中一段长为x(0x16),则围成的两个正方形面积之和y()2()2 (0x0时,就化为不等式f(x)0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式(2)数列的通项与前n项和是自变量为
3、正整数的函数,用函数的观点去处理数列问题十分重要(3)解析几何中的许多问题,需要通过解二元方程组才能解决这都涉及二次方程与二次函数有关理论(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决跟踪演练1(1)若函数f(x)在R上可导,且满足f(x)”“0,0,)在一个周期内的图象,则此函数的解析式是_答案(1)(2)y2sin(2x)解析(1)由于f(x)0恒成立,因此在R上是单调递增函数,即f(2)2f(1)(2)依函数图象,知y的最大值为2,所以A2.又(),所以T,又,所以2,所以y2sin(2x)将(,2)代入可得sin()1,故2k,kZ,又
4、,所以.所以函数的解析式为y2sin(2x)二、数形结合思想以形助数(数题形解)以数辅形(形题数解)借助形的生动性和直观性来阐述数之间的关系,把数转化为形,即以形作为手段,数作为目的解决数学问题的数学思想借助于数的精确性和规范性及严密性来阐明形的某些属性,即以数作为手段,形作为目的解决问题的数学思想数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合例2(1)(2015湖南)若函数f(x)|2x2|b有两个零点,则实数b的取值范围是_(2)在平面直角坐标系中,O为原点,A(1,0),B(
5、0,),C(3,0),动点D满足|1,则|的取值范围是_答案(1)(0,2)(2)1,1解析(1)由f(x)|2x2|b0,得|2x2|b.在同一平面直角坐标系中画出y|2x2|与yb的图象,如图所示则当0b2时,两函数图象有两个交点,从而函数f(x)|2x2|b有两个零点(2)设D(x,y),则由|1,C(3,0),得(x3)2y21.又(x1,y),|.|的几何意义是点P(1,)与圆(x3)2y21上点之间的距离,由|PC|知,|的最大值是1,最小值是1.思维升华数形结合思想在解题中的应用(1)构建函数模型并结合其图象求参数的取值范围或解不等式(2)构建函数模型并结合其图象研究方程根或函数
6、的零点的范围(3)构建解析几何模型求最值或范围(4)构建函数模型并结合其图象研究量与量之间的大小关系跟踪演练2(1)已知奇函数f(x)的定义域是x|x0,xR,且在(0,)上单调递增,若f(1)0,则满足xf(x)0的x的取值范围是_(2)已知P是直线l:3x4y80上的动点,PA、PB是圆x2y22x2y10的两条切线,A、B是切点,C是圆心,则四边形PACB面积的最小值为_答案(1)(1,0)(0,1)(2)2解析(1)作出符合条件的一个函数图象草图即可,由图可知xf(x)PF2,则的值为_答案(1)(2)2或解析(1)由于f(a)3,若a1,则2a123,整理得2a11.由于2x0,所以
7、2a11无解;若a1,则log2(a1)3,解得a18,a7,所以f(6a)f(1)2112.综上所述,f(6a).(2)若PF2F190,则PFPFF1F,PF1PF26,F1F22,解得PF1,PF2,.若F2PF190,则F1FPFPFPF(6PF1)2,解得PF14,PF22,2.综上所述,2或.思维升华分类与整合思想在解题中的应用(1)由数学概念引起的分类有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等(2)由性质、定理、公式的限制引起的分类讨论有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等(3)由数学运算和字母参数
8、变化引起的分类如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等(4)由图形的不确定性引起的分类讨论有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等跟踪演练3(1)若m是2和8的等比中项,则圆锥曲线x21的离心率是_(2)设等比数列an的公比为q,前n项和Sn0(n1,2,3,),则q的取值范围是_答案(1)或(2)(1,0)(0,)解析(1)因为m是2和8的等比中项,所以m22816,所以m4.当m4时,圆锥曲线x21是椭圆,其离心率e;当m4时,圆锥曲线x21是双曲线,其离心率e.(
9、2)因为an是等比数列,Sn0,可得a1S10,q0.当q1时,Snna10;当q1时,Sn0,即0(n1,2,3,),则有或由得1q1.故q的取值范围是(1,0)(0,)四、转化与化归思想转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题例4(1)若函数f(x)x3tx23x在区间1,4上单调递减,则实数t的取值范围是_(2)定义运算:(ab)xax2bx2,若关于x的不等式(ab)x0的解集为x|1x2,则关于
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-793234.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
河南省息县一高2019-2020学年高二6月月考语文试题 PDF版含答案.pdf
