【九年级上册】23.4 中心对称(知识讲解)-(人教版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级上册
- 资源描述:
-
1、专题23.4 中心对称(知识讲解)【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心这两个图形中的对应点叫做关于中心的对称点特别说明:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形
2、绕着某一个点旋转180能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心特别说明:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别指两个全等图形之间的相互位置关系对称中心不定指一个图形本身成中心对称对称中心是图形自身或内部的点联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形如果把中心对
3、称图形对称的部分看成是两个图形,那么它们又关于中心对称要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:特别说明:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称图形与轴对称图形的识别11下列四个银行标志中,既是中心对称图形又是轴对称图形的是()ABCD【答案】A【分析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;
4、在平面内,如果把一个图形绕某个点旋转180后,能与原图形重合,那么就说这个图形是中心对称图形根据轴对称图形和中心对称图形的概念分析判断即可解:A. 既是轴对称图形,又是中心对称图形,符合题意;B.是轴对称图形,但不是中心对称图形,故不符合题意;C.既不是轴对称图形,也不是中心对称图形,故不符合题意;D. 是中心对称图形,但不是轴对称图形,故不符合题意故选:A【点拨】本题主要考查了轴对称图形和中心对称图形的知识,理解轴对称图形和中心对称图形的概念是解题关键举一反三:【变式1】 习近平主席在2022年新年贺词中提到“人不负青山,青山定不负人”,一语道出“人与自然和谐共生”的至简大道下列有关环保的四
5、个图形中,是中心对称图形的是()A B CD【答案】B【分析】根据中心对称图形的概念进行判断即可;解:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;故符合题意的是选项B;故选:B【点拨】本题主要考查中心对称图形的概念,掌握中心对称图形的概念是解题的关键【变式2】 下列图形既是轴对称图形又是中心对称图形的是()A B C D【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;C、该图形不是轴对称图形,是中心对称
6、图形,故C选项错误;D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误故答案为B【点拨】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合类型二、利用中心对称图形作图2如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹)(1)在图1中,作关于点对称的;(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的【分析】(1)分别作出A,B,C三点关于O点对称的点,然后顺次连接即可得;(2)计算得出AB=,AC=5,再根据旋转作图即可解:(1)如图1所示;(2)根据勾股定理可计算
7、出AB=,AC=5,再作图,如图2所示【点拨】本题考查复杂-应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题举一反三:【变式1】如图所示的两个图形成中心对称,请找出它的对称中点【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.解:连接CC,BB,两条线段相交于当O,则点O即为对称中点【点拨】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.【变式2】 在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系ABC是格点三角形(顶点在网格线的交点上) (1)先作ABC关于原点
8、O成中心对称的A1B1C1,再把A1B1C1向上平移4个单位长度得到A2B2C2;(2)A2B2C2与ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【答案】(1)画图见分析;(2)(0,2).解:分析:(1)根据中心对称和平移性质分别作出变换后三顶点的对应点,再顺次连接可得;(2)根据中心对称的概念即可判断详解:(1)如图所示,A1B1C1和A2B2C2即为所求;(2)由图可知,A2B2C2与ABC关于点(0,2)成中心对称【点拨】本题考查了中心对称作图和平移作图,熟练掌握中心对称的性质和平移的性质是解答本题的关键. 中心对称的性质:关于中心对称的两个图形能够
9、完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.类型三、利用中心对称图形性质求值3.如图,与关于O点中心对称,点E、F在线段AC上,且AF=CE求证:FD=BE【分析】根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出DOFBOE即可证明:ABO与CDO关于O点中心对称,OB=OD,OA=OCAF=CE,OF=OE在DOF和BOE中,DOFBOE(SAS)FD=BE举一反三:【变式1】如图,在中,D为BC上任一点,交AB于点交AC于点F,求证:点关于AD的中点对称试题分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称证明:
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
