【创新设计】高考数学 第九篇 第8讲 曲线与方程限时训练 新人教A版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 【创新设计】高考数学 第九篇 第8讲 曲线与方程限时训练 新人教A版 创新 设计 高考 数学 第九 曲线 方程 限时 训练 新人
- 资源描述:
-
1、第8讲 曲线与方程A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1 动点P(x,y)满足5|3x4y11|,则点P的轨迹是 ()A椭圆 B双曲线C抛物线 D直线解析设定点F(1,2),定直线l:3x4y110,则|PF|,点P到直线l的距离d.由已知得1,但注意到点F(1,2)恰在直线l上,所以点P的轨迹是直线选D. 答案D2(2022榆林模拟)若点P到直线x1的距离比它到点(2,0)的距离小1,则点P的轨迹为()A圆 B椭圆 C双曲线 D抛物线解析依题意,点P到直线x2的距离等于它到点(2,0)的距离,故点P的轨迹是抛物线答案D3(2022临川模拟)设圆(x1)
2、2y225的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为()A.1 B.1C.1 D.1解析M为AQ垂直平分线上一点,则|AM|MQ|,|MC|MA|MC|MQ|CQ|5,故M的轨迹为椭圆,a,c1,则b2a2c2,椭圆的标准方程为1.答案D4(2022烟台月考)已知点P是直线2xy30上的一个动点,定点M(1,2),Q是线段PM延长线上的一点,且|PM|MQ|,则Q点的轨迹方程是()A2xy10 B2xy50C2xy10 D2xy50解析由题意知,M为PQ中点,设Q(x,y),则P为(2x,4y),代入2xy30,得2xy50
3、.答案D二、填空题(每小题5分,共10分)5(2022泰州月考)在ABC中,A为动点,B、C为定点,B,C(a0),且满足条件sin Csin Bsin A,则动点A的轨迹方程是_解析由正弦定理,得,|AB|AC|BC|,且为双曲线右支答案1(x0且y0)6. 如图,点F(a,0)(a0),点P在y轴上运动,M在x轴上运动,N为动点,且0,0,则点N的轨迹方程为_解析由题意,知PMPF且P为线段MN的中点,连接FN,延长FP至点Q使P恰为QF之中点;连接QM,QN,则四边形FNQM为菱形,且点Q恒在直线l:xa上,故点N的轨迹是以点F为焦点,直线l为准线的抛物线,其方程为:y24ax.答案y2
4、4ax三、解答题(共25分)7(12分)已知长为1的线段AB的两个端点A、B分别在x轴、y轴上滑动,P是AB上一点,且,求点P的轨迹C的方程解设A(x0,0),B(0,y0),P(x,y),又(xx0,y),(x,y0y),所以xx0x,y(y0y),得x0x,y0(1)y.因为|AB|1,即xy(1)2,所以2(1)y2(1)2,化简得y21.点P的轨迹方程为y21.8(13分)设椭圆方程为x21,过点M(0,1)的直线l交椭圆于A,B两点,O为坐标原点,点P满足(),点N的坐标为,当直线l绕点M旋转时,求:(1)动点P的轨迹方程;(2)|的最大值,最小值解(1)直线l过定点M(0,1),当
5、其斜率存在时设为k,则l的方程为ykx1.设A(x1,y1),B(x2,y2),由题意知,A、B的坐标满足方程组消去y得(4k2)x22kx30.则4k212(4k2)0.x1x2,x1x2.P(x,y)是AB的中点,则由消去k得4x2y2y0.当斜率k不存在时,AB的中点是坐标原点,也满足这个方程,故P点的轨迹方程为4x2y2y0.(2)由(1)知4x22,x而|NP|222232,当x时,|取得最大值,当x时,|取得最小值.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1(2022全国)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AEBF.动点P
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
生物衡中月考下学期高三二调答案.pdf
