分享
分享赚钱 收藏 举报 版权申诉 / 6

类型【创新设计】(浙江专用)2022届高考数学总复习 第13篇 第4讲 数学归纳法限时训练 理.docx

  • 上传人:a****
  • 文档编号:800312
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:6
  • 大小:43.03KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    创新设计 【创新设计】浙江专用2022届高考数学总复习 第13篇 第4讲 数学归纳法限时训练 创新 设计 浙江 专用 2022 高考 数学 复习 13 归纳法 限时 训练
    资源描述:

    1、第4讲数学归纳法 分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1用数学归纳法证明不等式1(nN*)成立,其初始值至少应取 ()A7 B8 C9 D10解析左边12,代入验证可知n的最小值是8.答案B2用数学归纳法证明命题“当n是正奇数时,xnyn能被xy整除”,在第二步时,正确的证法是 ()A假设nk(kN),证明nk1命题成立B假设nk(k是正奇数),证明nk1命题成立C假设n2k1(kN),证明nk1命题成立D假设nk(k是正奇数),证明nk2命题成立解析A、B、C中,k1不一定表示奇数,只有D中k为奇数,k2为奇数答案D3用数学归纳法证明1,则当n

    2、k1时,左端应在nk的基础上加上 ()A. BC. D.解析当nk时,左侧1,当nk1时,左侧1.答案C4对于不等式n1(nN*),某同学用数学归纳法的证明过程如下:(1)当n1时,11,不等式成立(2)假设当nk(kN*且k1)时,不等式成立,即k1,则当nk1时,1,nN*),求证:S2n1(n2,nN*)证明(1)当n2时,S2nS411,即n2时命题成立;(2)假设当nk(k2,kN*)时命题成立,即S2k11,则当nk1时,S2k111111,故当nk1时,命题成立由(1)和(2)可知,对n2,nN*.不等式S2n1都成立8(13分)已知数列an:a11,a22,a3r,an3an2

    3、(nN*),与数列bn:b11,b20,b31,b40,bn4bn(nN*)记Tnb1a1b2a2b3a3bnan.(1)若a1a2a3a1264,求r的值;(2)求证:T12n4n(nN*)(1)解a1a2a3a1212r34(r2)56(r4)78(r6)484r.484r64,r4.(2)证明用数学归纳法证明:当nN*时,T12n4n.当n1时,T12a1a3a5a7a9a114,故等式成立假设nk时等式成立,即T12k4k,那么当nk1时,T12(k1)T12ka12k1a12k3a12k5a12k7a12k9a12k114k(8k1)(8kr)(8k4)(8k5)(8kr4)(8k8

    4、)4k44(k1),等式也成立根据和可以断定:当nN*时,T12n4n.分层B级创新能力提升1用数学归纳法证明123n2,则当nk1时左端应在nk的基础上加上 ()Ak21B(k1)2C.D(k21)(k22)(k23)(k1)2解析当nk时,左侧123k2,当nk1时,左侧123k2(k21)(k1)2当nk1时,左端应在nk的基础上加上(k21)(k22)(k23)(k1)2.答案D2(2022广州一模)已知123332433n3n13n(nab)c对一切nN*都成立,则a、b、c的值为 ()Aa,bc BabcCa0,bc D不存在这样的a、b、c解析等式对一切nN*均成立,n1,2,3

    5、时等式成立,即整理得解得a,bc.答案A3已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),则第60个数对是_解析本题规律:211;31221;4132231;514233241;一个整数n所拥有数对为(n1)对设123(n1)60,60,n11时还多5对数,且这5对数和都为12,12111210394857,第60个数对为(5,7)答案(5,7)4已知数列an的通项公式an(nN*),f(n)(1a1)(1a2)(1an),试通过计算f(1),f(2),f(3)的值,推测出f(

    6、n)的值是_解析f(1)1a11,f(2)(1a1)(1a2)f(1),f(3)(1a1)(1a2)(1a3)f(2),由此猜想,f(n)(nN*)答案(nN*)5设数列an满足a13,an1a2nan2,n1,2,3,(1)求a2,a3,a4的值,并猜想数列an的通项公式(不需证明);(2)记Sn为数列an的前n项和,试求使得Sn2n成立的最小正整数n,并给出证明解(1)a25,a37,a49,猜想an2n1.(2)Snn22n,使得Snn22n.n6时,266226,即6448成立;假设nk(k6,kN*)时,2kk22k成立,那么2k122k2(k22k)k22kk22kk22k32k(

    7、k1)22(k1),即nk1时,不等式成立;由、可得,对于所有的n6(nN*)都有2nn22n成立6(2022安徽)数列xn满足x10,xn1xxnc(nN*)(1)证明:xn是递减数列的充分必要条件是c0;(2)求c的取值范围,使xn是递增数列(1)证明先证充分性,若c0,由于xn1xxncxncxn,故xn是递减数列;再证必要性,若xn是递减数列,则由x2x1可得c0.(2)解假设xn是递增数列由x10,得x2c,x3c22c.由x1x2x3,得0c1.由xnxn1xxnc知,对任意n1都有xn0,即xn1.由式和xn0还可得,对任意n1都有xn1(1)(xn)反复运用式,得xn(1)n1(x1)(1)n1,xn1和 xn(1)n1两式相加,知21(1)n1对任意n1成立根据指数函数y(1)n的性质,得210,c,故0c.若00,即证xn对任意n1成立下面用数学归纳法证明当0c时,xn对任意n1成立(i)当n1时,x10,结论成立(ii)假设当nk(kN*)时,结论成立,即xn.因为函数f(x)x2xc在区间内单调递增,所以xk1f(xk)f(),这就是说当nk1时,结论也成立故xnxn,即xn是递增数列由知,使得数列xn单调递增的c的范围是.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【创新设计】(浙江专用)2022届高考数学总复习 第13篇 第4讲 数学归纳法限时训练 理.docx
    链接地址:https://www.ketangku.com/wenku/file-800312.html
    相关资源 更多
  • 人教版五年级下册数学 期末测试卷附答案【巩固】.docx人教版五年级下册数学 期末测试卷附答案【巩固】.docx
  • 人教版五年级下册数学 期末测试卷附答案【实用】.docx人教版五年级下册数学 期末测试卷附答案【实用】.docx
  • 人教版五年级下册数学 期末测试卷附答案【完整版】.docx人教版五年级下册数学 期末测试卷附答案【完整版】.docx
  • 人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【基础题】.docx人教版五年级下册数学 期末测试卷附答案【基础题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优】.docx人教版五年级下册数学 期末测试卷附答案【培优】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx
  • 人教版五年级下册数学 期末测试卷附答案【典型题】.docx人教版五年级下册数学 期末测试卷附答案【典型题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【b卷】.docx人教版五年级下册数学 期末测试卷附答案【b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【a卷】.docx人教版五年级下册数学 期末测试卷附答案【a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案ab卷.docx人教版五年级下册数学 期末测试卷附答案ab卷.docx
  • 人教版五年级下册数学 期末测试卷附答案.docx人教版五年级下册数学 期末测试卷附答案.docx
  • 人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精选题).docx人教版五年级下册数学 期末测试卷附完整答案(精选题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精品).docx人教版五年级下册数学 期末测试卷附完整答案(精品).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(有一套).docx人教版五年级下册数学 期末测试卷附完整答案(有一套).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(易错题).docx人教版五年级下册数学 期末测试卷附完整答案(易错题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(必刷).docx人教版五年级下册数学 期末测试卷附完整答案(必刷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(典优).docx人教版五年级下册数学 期末测试卷附完整答案(典优).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1