【志鸿优化设计】2022届高考数学一轮复习 考点规范练40.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 志鸿优化设计
- 资源描述:
-
1、考点规范练40直线、平面平行的判定与性质一、非标准1.已知直线a,b,平面,则以下三个命题:若ab,b,则a;若ab,a,则b;若a,b,则ab.其中真命题的个数是()A.0B.1C.2D.32.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是()A.B.C.D.3.平面平面的一个充分条件是()A.存在一条直线a,a,aB.存在一条直线a,a,aC.存在两条平行直线a,b,a,b,a,bD.存在两条异面直线a,b,a,b,a,b4.如图,在四面体ABCD中,截面PQMN是正方形,且PQAC,则下列命题中错误的是()A.ACBDB
2、.AC截面PQMNC.AC=BDD.异面直线PM与BD所成的角为455.如图,四边形ABCD是边长为1的正方形,MD平面ABCD,NB平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是()A.MCANB.GB平面AMNC.平面CMN平面AMND.平面DCM平面ABN6.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件时,有平面D1BQ平面PAO.7.(2022河北保定调研)已知直三棱柱ABC-ABC满足BAC=90,AB=AC=AA=2,点M,N分别为AB,BC的中点.(1)求证:MN平面AACC;(2)求
3、三棱锥C-MNB的体积.8.如图,在三棱锥S-ABC中,平面SAB平面SBC,ABBC,AS=AB.过A作AFSB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG平面ABC;(2)BCSA. 9.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AEEB=AFFD=14.又H,G分别为BC,CD的中点,则()A.BD平面EFG,且四边形EFGH是平行四边形B.EF平面BCD,且四边形EFGH是梯形C.HG平面ABD,且四边形EFGH是平行四边形D.EH平面ADC,且四边形EFGH是梯形10.设m,n是平面内的两条不同直线,l1,l2是平面内的两条相交直线,则的一个充分
4、不必要条件是()A.m且l1B.ml1且nl2C.m且nD.m且nl211.设,为三个不同的平面,m,n是两条不同的直线,在命题“若=m,n,且,则mn”中的横线处填入下列三组条件中的一组,使该命题为真命题.,n;m,n;n,m.可以填入的条件有.12.如图,在四棱锥P-ABCD中,PD平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A-PDE的体积;(2)AC边上是否存在一点M,使得PA平面EDM?若存在,求出AM的长;若不存在,请说明理由.13.(2022安徽,文19)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F
5、,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH平面ABCD,BC平面GEFH.(1)证明:GHEF;(2)若EB=2,求四边形GEFH的面积.#一、非标准1.A解析:对于,若ab,b,则应有a或a,所以不正确;对于,若ab,a,则应有b或b,因此不正确;对于,若a,b,则应有ab或a与b相交或a与b异面,因此是假命题.综上,在空间中,以上三个命题都是假命题.2.C解析:对于图形,平面MNP与AB所在的对角面平行,即可得到AB平面MNP;对于图形,ABPN,即可得到AB平面MNP;图形无论用定义还是判定定理都无法证明线面平行.3.D解析:若=l,al,a,a,则a,a,故排除A.若
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
