分享
分享赚钱 收藏 举报 版权申诉 / 79

类型【机构秘籍】小学奥数题库《几何》-曲线型-扇形-3星题(含解析)全国通用版【唯一店:教师学科网资料】.docx

  • 上传人:a****
  • 文档编号:809364
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:79
  • 大小:1.47MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    唯一店:教师学科网资料
    资源描述:

    1、几何-曲线型几何-扇形-3星题课程目标知识点考试要求具体要求考察频率扇形B1.了解扇形的特征和有关概念2.能够通过圆的面积和周长公式推导出扇形的面积和弧长公式3.能够运用公式计算扇形的弧长、面积和周长少考知识提要扇形 概念圆上两点之间的部分叫做弧 。扇形是指一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。其中,圆的半径也称为扇形的半径,而两条半径所形成的夹角称为扇形的圆心角。 公式扇形的弧长= n3602r 扇形的面积= n360r2 其中,n 表示圆心角的度数注意:扇形的弧长不是周长,扇形的周长还需要加上两条半径。精选例题扇形 1. 如图,分别以 B,C 为圆心的两个半圆的半径都是 1

    2、 厘米,则阴影部分的周长是 厘米( 取 3)【答案】3【分析】BE,BC,CE 均为圆的半径,所以 BCE 等边三角形,每个角均为 60 度,所以阴影部分的两段圆弧均 为 60 度的扇形所对应的圆弧,所以周长为60360d2+1=16322+1=3(厘米). 2. 下图中,两个圆心角是 90 的扇形盖在大圆上,小圆盖在两个扇形上,它们的圆心都在同一点如果小圆、大圆、扇形的半径比是 1:3:4,那么阴影图形面积占整个图形面积的 %【答案】32【分析】设大圆、小圆、扇形的半径分别是 r、3r、4r整个商标的面积是12(4r)2+12(3r)2=12.5r2;阴影部分的面积是12(3r)2-12r2

    3、=4r2,所以,阴影图形面积占整个商标图形的面积的4r212.5r2=32%. 3. 如图,ABC 是一个等腰直角三角形,直角边的长度是 1 米现在以 C 点为圆心,把三角形 ABC 顺时针转 90 度,那么,AB 边在旋转时所扫过的面积是 平方米(3.14)【答案】0.6775【分析】如图,顺时针旋转后,A 点沿弧 AA 转到 A 点,B 点沿弧 BB 转到 B 点,D 点沿弧 DD 转到 D 点因为 CD 是 C 点到 AB 的最短线段,所以 AB 扫过的面积就是图中的弧 AAB 与 BDDA 之间的阴影图形S阴影=S半圆-S空白,SABC=SBDC+SADC=1211=12(平方米),S

    4、ABC=S正方形ADCD=CD2=12(平方米),所以,S扇形DCD=4CD2=412=8(平方米),我们推知S阴影=2BC2-S扇形DCD-(SBDC+SACD)=2-8-12=38-12=0.6775(平方米). 4. 如图,是一个由 2 个半圆、2 个扇形、1 个正方形组成的“心型”已知半圆的直径为 10,那么,“心型”的面积是 (注: 取 3.14)【答案】257【分析】图中图形面积等于一个正方形加上一个半径为 5 的圆,再加上一个半径为 10 的 14 圆,所以面积为:1010+55+141010=257. 5. 如下图所示,AB 是半圆的直径,O 是圆心,AC=CD=DB,M 是

    5、CD 的中点,H 是弦 CD 的中点若 N 是 OB 上一点,半圆的面积等于 12 平方厘米,则图中阴影部分的面积是 平方厘米【答案】2【分析】连接 OC、OD、OH,由于 C、D 是半圆的两个三等分点 M 是 CD 的中点,H 是弦 CD 的中点,可见这个图形是对称的由对称性可知 CD 与 AB 平行,由此可得:CHN 的面积与 CHO 的面积相等,所以,阴影部分面积等于扇形 COD 面积的一半,而扇形 COD 的面积又等于半圆面积的 13,所以,阴影部分面积等于半圆面积的 16,为 1216=2(平方厘米) 6. 如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作 14 圆

    6、,若图中的两个阴影部分的面积相等,则此长方形的长与宽的比值是 【答案】:2【分析】因为 S2=S4,两个 14 圆的面积S1+S2+S2+S3=S1+S2+S3+S4与长方形面积相等所以设长为 a,宽为 b,14b22=ab,b=2a,a:b=:2. 7. 如图,直角三角形 ABC 中,B 为直角,且 BC=2 厘米,AC=4 厘米,则在将 ABC 绕 C 点顺时针旋转 120 的过程中,AB 边扫过图形的面积为 (3.14)【答案】12.56 平方厘米【分析】如下图所示,假设 ABC 旋转 120 到达 ABC 的位置阴影部分为 AB 边扫过的图形从图中可以看出,阴影部分面积等于整个图形的总

    7、面积减去空白部分面积,而整个图形总面积等于扇形 ACA 的面积与 ABC 的面积之和,空白部分面积等于扇形 BCB 的面积与 ABC 的面积,由于 ABC 的面积与 ABC 的面积相等,所以阴影部分的面积等于扇形 ACA 与扇形 BCB 的面积之差,为12036042-12036022=4=12.56(平方厘米). 8. 如下图所示,已知圆心是 O,半径 r=9 厘米,1=2=15,那么阴影部分的面积是 平方厘米(=3.14)【答案】42.39【分析】因为圆的半径都相等,于是 OA=OB在等腰三角形 AOB 中两个底角都是 15又知道三角形内角之和是 180,所以,三角形 AOB 的顶角 AO

    8、B=180-(15+15)=150同理 AOC=150,因此 BOC=360-(150+150)=60这就是说,阴影部分扇形的面积是圆面积的 16,即 16r2=163.1492=42.39(平方厘米) 9. 如图,边长为 12 米的正方形池塘的周围是草地,池塘边 A,B,C,D 处各有一根木桩,且 AB=BC=CD=3 米现用长 4 米的绳子将一头羊拴在其中的某根木桩上(不计打结处)为使羊在草地上活动区域的面积最大,应将绳子拴在 处的木桩上【答案】C【分析】在 A 点时活动区域的面积是一个半径为 4 米的半圆,即1242=8(平方米).在 B、D 点时活动区域的面积都是一个半径为 4 米的半

    9、圆加一个 14 半径为 1 米的圆即1242+1412=814(平方米).在 C 点时活动区域的面积是 34 个半径为 4 米的圆,即3442=12(平方米).综上所述,拴在 C 处的木桩上时活动范围最大10. 如下图所示,平行四边形的长边是 6,短边是 3,高为 2.6,则阴影部分的面积为 ( 取 3.14)【答案】15.9【分析】根据容斥的思想,阴影的一半=大扇形+小扇形-平行四边形,所以阴影面积为:163.14(62+32)-62.62=15.9.11. 如下图所示,一个 14 圆中有一个正方形,阴影正方形的面积是 16,那么图中的扇形面积是 ( 取 3)【答案】30【分析】给图中标上字

    10、母,如下图所示,由于阴影正方形的面积为 16,则边长为 4,OC=CH=ED=2,OD=2+4=6,根据勾股定理,可知扇形的半径满足:r2=22+62=40.所以图中扇形的面积为:1440=30.12. 一个边长为 100 厘米的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是 厘米( 取 3.14)【答案】2384【分析】周长=500+152(100+200+300+400+500)=2384.13. 半径为 10、20、30 的三个扇形如下图放置,S2 是 S1 的 倍【答案】5【分析】三个扇形的半径比为 1:2:3,则面积比为 1:4:9,所以答案为 (9-4)1=5 倍14.

    11、 分别以一个边长为 2 厘米的等边三角形的三个顶点为圆心,以 2 厘米为半径画弧,得到下图那么,阴影图形的周长是 厘米( 取 3.14)【答案】12.56【分析】图形周长由 6 段弧组成,每段弧对应的圆心角为 60,所以图形的周长等于一个圆的周长23.142=12.56(厘米)15. 如下图所示,ABCD 是边长为 10 厘米的正方形,且 AB 是半圆的直径,则阴影部分的面积是 平方厘米( 取 3.14)【答案】17.875【分析】如下图所示,连接 DB,阴影部分的面积的 2 倍相当于$text正方形面积-text三角形$ DOC $的面积-text半圆面积,$所以该面积 =(1010-101

    12、04-3.14552)2=17.875(平方厘米)16. 6 个半径相同的小圆和 1 个大圆如图摆放大圆的面积是 120,那么,阴影部分面积是 【答案】40【分析】设大圆半径和小圆半径分别为 R 和 r,画出大小圆半径会发现它们同处一个正三角形,如下图,两条粗线分别为大圆直径和小圆直径,由正三角形性质和勾股定理,有R2+r2=(2r)2R2=3r2,这说明大圆面积和小圆面积是 3 倍关系,即小圆面积为 40;由于三个小圆面积等于大圆面积,所以下图中红色部分面积等于灰色部分;如下图,可以看出,上图中的两种阴影部分拼在一起可以形成扇形,一共可以形成 6 个 120 度扇形,总和为 2 个小圆,又因

    13、为两种阴影部分面积相等,所以所求面积为一个小圆面积 4017. 如下图所示,梯形 ABCD 中的两个阴影部分的面积相等,DE=1 厘米,A=B=45,则 CD= 厘米(其中 取 3.14)【答案】0.57【分析】由于两个阴影部分面积相等,可知扇形面积为梯形面积的一半,又知道扇形面积为 18(12+12)=4,所以梯形面积为 2,设 CD 的长为 x 厘米,那么 (x+1+1+x)12=2求得 CD 的长为 2-1=0.57(厘米)18. 如图,在 33 方格表中,分别以 A、E、F 为圆心,半径为 3、2、1,圆心角都是 90 的三段圆弧与正方形 ABCD 的边界围成了两个带形,那么这两个带形

    14、的面积之比 S1:S2=?【答案】5:3【分析】如下图,仔细观察图形不难发现带形 S1 的面积等于曲边三角形 BCD 的面积减去曲边三角形 B1CD1 的面积,而这两个曲边三角形的面积都可以在各自所在的正方形内求出所以,S1的面积=32-3214-22-2214=51-4;同理可求得带形 S2 的面积:带形 S2 的面积 = 曲边三角形 B1CD1 的面积 - 曲边三角形 B2CD2 的面积 =31-4;所以,S1:S2=5:319. 如图(1)是一个直径是 3 厘米的半圆,AB 是直径如图(2)所示,让 A 点不动,把整个半圆逆时针转 60,此时 B 点移动到 C 点请问:图中阴影部分的面积

    15、是多少平方厘米?( 取 3.14)【答案】4.71 平方厘米【分析】图中阴影部分面积为整个图形面积减去半圆的面积,而整个图形面积为一个半圆面积与一个圆心角为 60 的扇形面积之和因此阴影面积等于圆心角为 60 的扇形面积,即 1632=4.7120. 如图,一只狗被栓在底座为边长 3 米的等边三角形建筑物的墙角上,绳长是 4 米,求狗所能到的地方的总面积?【答案】43.96 平方米【分析】如下图,狗被栓在底座为边长 3 米的等边三角形建筑物的墙角上,绳长是 4 米,狗的活动区域可以分割成三个部分:蓝色部分是一个半径为 4 米、圆心角为 300 度的扇形:360-60=300(度)红色部分是两个

    16、同样的边长为 1 米、圆心角为 120 度的扇形:4-3=1(米),180-60=120(度)所以狗能到的地方的总面积为:3.1444300360+23.1411120360=43.96(平方米)21. 圆的半径是 9cm,圆心角为 120 的扇形的周长和面积是多少?【答案】周长:36.84cm;面积 84.78cm2【分析】圆心角 120 的扇形,面积是圆的面积的三分之一,周长是圆周的三分之一加上两个半径的长面积=1392=84.78(cm2)周长=1329+92=18.84+18=36.84(cm)22. 如图,C、D 是以 AB 为直径的半圆的三等分点,O 是圆心,且半径为 6求图中阴影

    17、部分的面积【答案】6【分析】如图,连接 OC、OD、CD由于 C、D 是半圆的三等分点,所以 AOC 和 COD 都是正三角形,那么 CD 与 AO 是平行的所以 ACD 的面积与 OCD 的面积相等,那么阴影部分的面积等于扇形 OCD 的面积,为 6216=623. 已知图中正方形的边长是 2,分别以其四个顶点为圆心的直角扇形恰好交于正方形的中心,求图中阴影部分的面积【答案】2-4【分析】r2=2,S阴影=r2-22=2-424. 如图,正方形边长为 1,正方形的 4 个顶点和 4 条边分别为 4 个圆的圆心和半径,求阴影部分面积( 取 3.14)【答案】7.14【分析】把中间正方形里面的

    18、4 个小阴影向外平移,得到如下图所示的图形,可见,阴影部分的面积等于四个正方形面积与四个 90 的扇形的面积之和,所以,S阴影=4S+4S14圆=4S+S圆=412+12=4+=7.14.25. 如图,AB 与 CD 是两条垂直的直径,圆 O 的半径为 15,AEB 是以 C 为圆心,AC 为半径的圆弧求阴影部分面积【答案】225 平方厘米【分析】阴影部分是个月牙形,不能直接通过面积公式求,那么我们可以把阴影部分看成半圆加上三角形 ABC 再减去扇形 ACB 的结果半圆面积为 12152,三角形 ABC 面积为1215+1515=152,又因为三角形面积也等于 12AC2,所以 AC2=215

    19、2,那么扇形 ACB 的面积为90360AC2=142152.阴影部分面积S阴影=S半圆+S三角形-S扇形=12152+152-142152=225.26. 如图所示,一只小狗被拴在建筑物的一角,四周都是空地建筑物是一个边长为 2 米的等边三角形,绳长是 3 米,那么小狗的活动范围是多少?(建筑外墙不可逾越,小狗身长忽略不计, 取 3)【答案】24.5【分析】首先画出小狗活动的范围,然后把活动范围分成几个扇形来求解,30036032+24036012=24.527. 正三角形 ABC 的边长是 6 厘米,在一条直线上将它翻滚几次,使 A 点再次落在这条直线上,那么 A 点在翻滚过程中经过的路线

    20、总长度是多少厘米?如果三角形面积是 15 平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留 )【答案】24+15【分析】如下图所示,A 点在翻滚过程中经过的路线为两段 120 的圆弧,所以路线的总长度为:261203602=8(厘米);三角形在滚动过程中扫过的图形的为两个 120 的扇形加上一个与其相等的正三角形,面积为:621203602+15=24+15(平方厘米)28. 如图,一头山羊被拴在一个边长为 4 米的等边三角形的建筑物的一个顶点处,四周都是空旷,绳长刚好够山羊走到三角形建筑物外的任一位置,请问:山羊的活动范围有多少平方米?(建筑外墙不可逾越,山羊身长忽略不计

    21、, 取 3)【答案】98【分析】山羊的活动范围如图所示,绳长为 6 米,面积为30036062+212036022=983=98(平方米).29. 如图,已知扇形 BAC 的面积是半圆 ADB 面积的 43 倍,则角 CAB 的度数是多少?【答案】60 度【分析】设半圆 ADB 的半径为 1,则半圆面积为 1212=2,扇形 BAC 的面积为 243=23因为扇形 BAC 的面积为 r2n360,所以,22n360=23,得到 n=60,即角 CAB 的度数是 60 度30. 如下图,直角三角形 ABC 的两条直角边分别为 6 和 7,分别以 B、C 为圆心,2 为半径画圆,已知图中阴影部分的

    22、面积是 17,那么角 A 是多少度(=3)【答案】A=60【分析】SABC=1267=21,三角形 ABC 内两扇形面积和为 21-17=4,根据扇形面积公式两扇形面积和为 B+C36022=4,所以 B+C=120,A=6031. 如图所示,求阴影面积,图中是一个正六边形,面积为 1040 平方厘米,空白部分是 6 个半径为 10 厘米的小扇形(圆周率取 3.14)【答案】412 平方厘米【分析】所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式 S扇=nR2360可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心

    23、角为 60,那么 AOC=120,又知四边形 ABCO 是平行四边形,所以 ABC=120,这样就可求出扇形的面积和为 6120360102=628(平方厘米),阴影部分的面积 =1040-628=412(平方厘米)32. 如图中三个圆的半径都是 5cm,三个圆两两相交于圆心求阴影部分的面积和( 取 3.14)【答案】39.25(cm2)【分析】将原图割补成如图,阴影部分正好是一个半圆,面积为553.142=39.25(cm2).33. (1)如图(1),一只小狗被拴在一个边长为 4 米的正方形的建筑物的顶点 A 处,四周都是空地,绳长 8 米,小狗的活动范围是多少平方米?(2)如图(2)小狗

    24、不是被拴在 A 处,而是在一边的中点 B 处,那么小狗的活动范围是多少平方米?(建筑外墙不可逾越,小狗身长忽略不计, 取 3.14)【答案】(1)175.84;(2)163.28【分析】(1)如下左图,小狗的活动范围为圆心角为 270、半径为 8 米的扇形,和两个圆心角为 90、半径为 4 米的扇形,总大小为3482+14422=56=175.84(平方米).(2)如下右图,小狗的活动范围为半径是 8 米的半圆,和两个圆心角为 90、半径为 6 米的扇形,以及两个圆心角为 90、半径为 2 米的扇形总大小为1282+14622+14222=52=163.28(平方米).34. 图是由一个圆与一

    25、个直角扇形重叠组成的,其中圆的直径与扇形的半径都是 4,阴影部分的面积是多少?( 取 3.14)【答案】4.56【分析】如下图所示,将下图阴影部分对折,则有:阴影部分面积为:1442-1244=4-8=4.56.35. 一只小狗被拴在一个边长为 4 米的正五方形的建筑物的一个顶点处,四周都是空地绳长刚好够小狗走到建筑物外的墙边的任一位置小狗的活动范围是多少平方米?(建筑外墙不可逾越,小狗身长忽略不计, 取 3.14)【答案】270.04 平方米【分析】根据题意,如上图所示,由对称性,小狗最远活动点是 A 点,故绳长为 10 米,所以其活动的范围是:S=12102+72360102+722360

    26、62+72236022=86=270.04(平方米).36. 直角三角形 ABC 放在一条直线上,斜边 AC 长 20 厘米,直角边 BC 长 10 厘米如下图所示,三角形由位置绕 A 点转动,到达位置,此时 B,C 点分别到达 B1,C1 点;再绕 B1 点转动,到达位置,此时 A,C1 点分别到达 A2,C2 点求 C 点经 C1 到 C2 走过的路径的长【答案】653 厘米【分析】由于 BC 为 AC 的一半,所以 CAB=30,则弧 CC1 为大圆周长的 180-30360=512,弧 C1C2 为小圆周长的 14,而 CC1+C1C2 即为 C 点经 C1 到 C2 的路径,所以 C

    27、 点经 C1 到 C2 走过的路径的长为220512+21014=503+5=653(厘米).37. 图中阴影部分的面积是多少平方厘米?( 取 3.14)【答案】12.765【分析】如下图,为了方便说明标上字母,并称曲线四边形 BCFE 的面积为“”将扇形 ABC 的面积称为“大扇形”,扇形 CDF 的面积称为“小扇形”,长方形 BCDE 的面积称为“长方形”阴影部分面积=大扇形-,=长方形-小扇形.所以有阴影部分面积=大扇形-(长方形-小扇形)=大扇形+小扇形-长方形.即1452+1422-25293.144-10=12.765(平方厘米).38. 如图所示,ABCD 是一边长为 4cm 的

    28、正方形,E 是 AD 的中点,而 F 是 BC 的中点以 C 为圆心、半径为 4cm 的四分之一圆的圆弧交 EF 于 G,以 F 为圆心、半径为 2cm 的四分之一圆的圆弧交 EF 于 H 点,若图中 S1 和 S2 两块面积之差为 m-n(cm2)(其中 m、n 为正整数),请问 m+n 之值为何? 【答案】11【分析】(法1)SFCDE=24=8cm2,S扇形BCD=1442=4 (cm2), S扇形BFH=1422= (cm2),而 S1-S2=S扇形BCD-S扇形BFH-SFCDE=4-8=3-8 (cm2),所以 m=3,n=8,m+n=3+8=11(法 2)如右上图,S+S1=SB

    29、FEA-S扇形BFH=24-224=8-(cm2), S+S2=SABCD-S扇形BCD=44-444=16-4 (cm2),所以,S1-S2=(8-)-(16-4)=3-8 (cm2),故 m+n=3+8=1139. 一条直线上放着一个长和宽分别为 4 厘米和 3 厘米的长方形(如下图)让这个长方形绕顶点 B 顺时针旋转 90 后到达长方形的位置,这样连续做三次,A 点到达 E 点的位置求 A 点经过的总路程的长度(圆周率按 3 计算)【答案】5【分析】如下图,A 点旋转所经过的为三段四分之一圆的弧长,其中 r1=4,r3=3由勾股定理知:r22=r21+r32=42+32=25,则r2=5

    30、.40. ABC 为等腰直角三角形,D 为半圆中点,BC 为半圆直径已知 AB=BC=10,那么阴影部分面积为多少?(圆周率取 3.14)【答案】32.125【分析】设 BC 中点为 O,连接 OD,则 OD=5,OB=5,BP:PO=AB:OD=10:5=2:1,BP=523=313,PO=OB-BP=5-313=123,SABP=12ABBP=1210313=1623,SOPD=125123=416,阴影部分的面积为 1623+1452-416=1212+254=32.12541. 如图,一条直线上放着一个长和宽分别为 4cm 和 3cm 的长方形它的对角线长恰好是 5cm让这个长方形绕顶

    31、点 B 顺时针旋转 90 后到达长方形的位置,这样连续做三次,点 A 到达点 E 的位置求点 A 走过的路程的长【答案】6cm【分析】因为长方形旋转了三次,所以 A 点在整个运动过程中也走了三段路程(如下图所示)这三段路程分别是:第 1 段是弧 AA1,它的长度是2414;第 2 段是弧 A1A2,它的长度是2514;第 3 段是弧 A2E,它的长度是2314;所以 A 点走过的路程长为:2414+2514+2314=6(cm).42. 如图中扇形的半径 OA=OB=6 厘米,AOB=45,AC 垂直 OB 于 C,那么图中阴影部分的面积是多少平方厘米?(3.14)【答案】5.13 平方厘米【

    32、分析】阴影部分面积为:4536062-1462=183.1436-1436=5.13(平方厘米).43. 如图所示,图中是一个正六边形,每个角上有一个半径是 10 厘米的扇形,六扇形面积总和是多少?( 取 3.14)【答案】628 平方厘米【分析】扇形面积公式 S扇=nR2360 已知半径和扇形弧的度数是 120,这样就可求出扇形的面积和为 6120360102=628(平方厘米)44. 在图中,两个四分之一圆弧的半径分别是 2 和 4,求两个阴影部分的面积差(圆周率取 3.14)【答案】1.42【分析】看清楚阴影部分如何构成则不难求解左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白

    33、色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形则为:444-422-42=33.14-8=1.4245. 如图,直角 ABC 的斜边 AB 长为 10 厘米,ABC=60此时 BC 长 5 厘米以 B 为中心,将 ABC 顺时针旋转 120,点 A、C 分别到达点 E、D 的位置求 AC 扫过图形的面积( 取 3)【答案】75 平方厘米【分析】扇形的面积=13AB2-AC2=13(100-25)=75(平方厘米).46. 如图所示,一个半径为 1 的圆绕着边长为 4 的正方形滚动一周又回到原来的位置,扫过的面积是多少?( 取 3.14)【答案

    34、】44.56【分析】两个半径为2的直角扇形+四个相同的长方形即为该圆扫过的面积,14224+244=44.5647. 如图,在一个边长为 4 的正方形内,以正方形的三条边为直径向内作三个半圆求阴影部分的面积【答案】8【分析】阴影部分经过切割平移变成了一个面积为正方形一半的长方形,则阴影部分面积为 442=848. 如图,正方形的边长是 2 厘米,圆形的半径是 1 厘米,当圆形绕正方形滚动一周又回到原来位置时,扫过的面积有多大?( 取 3.14)【答案】28.56 平方厘米【分析】扫过的区域如图所示,正方形的边长是 2 厘米,四个正方形的面积之和是 16 平方厘米,四个扇形正好可以拼成一个半径为

    35、 2 厘米的圆,圆的面积是 12.56 平方厘米,最后的结果是 28.56 平方厘米49. 如下图所示,为一个半圆和一个扇形,扇形的半径是半圆的直径,空白部分与阴影部分面积哪个大?【答案】一样大【分析】记半圆的半径为 1,半圆的面积为 12,扇形的半径为 2,面积为 空白与阴影的面积 12:(-12)=1:1一样大50. 一只狗被拴在底座为边长 3m 的等边三角形建筑物的墙角上(如图),绳长是 4m,求狗所能到的地方的总面积(圆周率按 3.14 计算)【答案】43.96m2【分析】如图所示,狗活动的范围是一个半径 4m,圆心角 300 的扇形与两个半径 1m,圆心角 120 的扇形之和所以答案

    36、是 43.96m251. 如右图,正方形的边长为 5 厘米,则图中阴影部分的面积是多少平方厘米?(=3.14)【答案】7.125【分析】观察可知阴影部分是被以 AD 为半径的扇形、以 AB 为直径的半圆形和对角线 BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,再观察可以发现左下边空白部分的面积就等于三角形 ABD 的面积减去扇形 ADE 的面积,那么思路就很清楚了因为 ADB=45,所以扇形 ADE 的面积为:45360AD2=453603.1452=9.8125(平方厘米),那么左下边空白的面积为:1255-9.812

    37、5=2.6875(平方厘米),又因为半圆面积为:12522=9.8125(平方厘米),所以阴影部分面积为:9.8125-2.6875=7.125(平方厘米)52. 如图,等腰直角三角形的一腰的长是 8 厘米,以它的两腰为直径分别画了两个半圆,那么阴影部分的面积共有多少平方厘米?( 取 3.14)【答案】18.24【分析】如下图,我们将原题中阴影部分分成 、 4 个部分,并且这 4 个部分的面积相等有 、 部分的面积和为二分之一圆的面积与其内等腰直角三角形的面积差二分之一圆的面积为124483.14=25.12.其内等腰直角的底为 8,高为 4,所以其面积为1284=16,所以 、 部分的面积和

    38、为25.12-16=9.12(平方厘米).而 、 四部分的面积和为 、 部分的面积和的 2 倍,即为9.122=18.24(平方厘米).所以,原题中阴影部分的面积共有 18.24 平方厘米53. 如下图,以 OA 为斜边的直角三角形的面积是 24 平方厘米,斜边长 10 厘米,将它以 O 点为中心旋转 90,问:三角形扫过的面积是多少?( 取 3)【答案】99 平方厘米【分析】从图中可以看出,直角三角形扫过的面积就是图中图形的总面积,等于一个三角形的面积与四分之一圆的面积之和圆的半径就是直角三角形的斜边 OA因此可以求得,三角形扫过的面积为:24+141010=24+25=99(平方厘米).5

    39、4. 求下列各图中阴影部分的面积(=3)(1)(2)(3)(4)(5)(6)【答案】(1)4.5(2)4(3)1(4)2(5)1.5(6)4.5【分析】略55. 如图,等腰直角三角形 ABC 的腰为 10;以 A 为圆心,EF 为圆弧,组成扇形 AEF;两个阴影部分的面积相等求扇形所在的圆面积【答案】400【分析】题目已经明确告诉我们 ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来等腰直角三角形的角 A 为 45 度,则扇形所在圆的面积为扇形面积的 8 倍而扇形面积与等腰直角三角形面积相等,即S扇形=121010=50则圆的面积为508=40056

    40、. 已知半圆所在的圆的面积为 62.8 平方厘米,求阴影部分的面积(=3.14)【答案】5.7 平方厘米【分析】由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算从图中可以看出,阴影部分的面积是一个 45 的扇形与一个等腰直角三角形的面积差由于半圆的面积为 62.8 平方厘米,所以 OA2=62.83.14=20因此SAOB=OAOB2=OA22=10(平方厘米).由于 AOB 是等腰直角三角形,所以 AB2=202=40因此$beginsplittext扇形 $ ABC $ 的面积 &= rm pi times AB2 times dfrac45360 &= rm pi tim

    41、es 40 timesdfrac45360 &= 15.7text(平方厘米).endsplit$所以,阴影部分的面积等于:15.7-10=5.7(平方厘米)57. 如图,求各图形中阴影部分的面积(图中长度单位为厘米, 取 3.14)【答案】(1)4.5 平方厘米;(2)1 平方厘米【分析】(1)将右边四分之一圆的阴影部分镜像到左边四分之一圆,阴影部分的面积为:332=4.5(平方厘米);(2)将右图的四分之一圆左移,则为一个正方形,面积为:11=1(平方厘米).58. 如图所示,一只小狗被拴在建筑物的一角,四周都是空地建筑物是一个边长为 10 米的正方形,绳长是 20 米,那么小狗的活动范围

    42、能有多少平方米?(建筑外墙不可逾越,小狗身长忽略不计, 取 3)【答案】1050【分析】狗的活动范围如图所示,分为 A、B、C 三部分,求面积得:34202+12102=350=1050(平方米)59. 平面上有 7 个大小相同的圆,位置如图所示如果每个圆的面积都是 10,那么阴影部分的面积是多少?【答案】20【分析】题中阴影部分面积可以视为一个完整的圆与 6 个下图阴影部分的面积和而图形 可以通过割补得到图形 ,而图形 是一个圆心角为 60 的扇形,即 16 圆所以,原题图中阴影部分面积为 1 个完整圆与 6 个 16 圆,即 2 个圆的面积即原题图中阴影部分面积为 210=20.60. 求

    43、图中阴影部分的面积( 取 3.14)【答案】107【分析】我们只用将两个半径为 10 厘米的四分之一圆减去空白的 、 部分面积和即可,其中 、 面积相等易知 、 部分均是等腰直角三角形,但是 部分的直角边 AB 的长度未知单独求 部分面积不易,于是我们将 、 部分平移至一起,如下图所示,则 、 部分变为一个以 AC 为直角边的等腰直角三角形,而 AC 为四分之一圆的半径,所以有 AC=10两个四分之一圆的面积和为214102503.14=157,而 、 部分的面积和为121010=50,所以阴影部分的面积为157-50=107(平方厘米).61. 如图所示,一个半径为 1 的圆绕着边长为 4

    44、的等边三角形滚动一周又回到原来的位置时,扫过的面积是多少?( 取 3.14)【答案】36.56【分析】扫过的面积为三个相同的长方形,加三个相同的圆心角为 120 度的扇形,长方形总面积 243=24,扇形总面积为 12.56,所以,扫过的整个面积是 36.5662. 已知三角形 ABC 是直角三角形,AC=4cm,BC=2cm,求阴影部分的面积【答案】3.85cm2【分析】从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形 ABC 的面积之差,所以阴影部分的面积为:12422+12222-1242=2.5-4=3.85(cm2)63. 如图,ABCD 是一个长为 4,宽为 3,对角

    45、线长为 5 的正方形,它绕 C 点按顺时针方向旋转 90,分别求出四边扫过图形的面积【答案】BC:94DC:4AB:4AD:94【分析】容易发现,DC 边和 BC 边旋转后扫过的图形都是以线段长度为半径的圆的 14,如图:因此 DC 边扫过图形的面积为 4,BC 边扫过图形的面积为 94研究 AB 边的情况在整个 AB 边上,距离 C 点最近的点是 B 点,最远的点是 A 点,因此整条线段所扫过部分应该介于这两个点所扫过弧线之间,见如图中阴影部分:下面来求这部分的面积观察图形可以发现,所求阴影部分的面积实际上是:扇形 ACA 面积 + 三角形 ABC 面积 - 三角形 ABC 面积一扇形 BC

    46、B 面积 = 扇形 ACA 面积一扇形 BCB 面积 =524-324 =4研究 AD 边扫过的图形由于在整条线段上距离 C 点最远的点是 A,最近的点是 D,所以我们可以画出 AD 边扫过的图形,如图阴影部分所示:用与前面同样的方法可以求出面积为:524-424=94,旋转图形的关键,是先从整体把握一下”变化过程”,即它是通过什么样的基本图形经过怎样的加减次序得到的先不去考虑具体数据,一定要把思路捋清楚最后会发现,所有数据要么直接告诉你,要么就”藏”在那儿,一定会有64. 面上有 7 个大小相同的圆,位置如图所示如果每个圆的面积都是 10,那么阴影部分的面积是多少?( 取 3.14)【答案】

    47、20【分析】阴影包括中间的一个圆和周围六个花瓣状的小小图形这个图形可以割补成一个顶角为 60 的扇形,如下图所示,因此六个这样的图形面积和正好是一个圆:阴影部分的面积等于两个圆的面积,为 2065. 如图,两个正方形摆放在一起,其中大正方形边长为 12,那么阴影部分面积是多少?( 取 3.14)【答案】阴影部分面积为 113.04【分析】方法一:设小正方形的边长为 a,则三角形 ABF 与梯形 ABCD 的面积均为(a+12)a2.阴影部分为:大正方形+梯形-三角形ABF-右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124=113.04.方法二:连接

    48、AC、DF,设 AF 与 CD 的交点为 M,由于四边形 ACDF 是梯形,根据梯形蝴蝶模型有 SADM=SCMF,所以S阴影=S扇形DCF=3.1412124=113.04.66. 如下图所示,边长为 3 的两个正方形 BDKE、正方形 DCFK 并排放置,以 BC 为边向同侧作等边三角形,分别以 B、C 为圆心,BK、CK 为半径画弧求阴影部分面积( 取 3.14)【答案】8.58【分析】每块阴影可以算成 16 圆减去中间空白部分,根据这个思路,阴影部分的面积为:13322-12322-322=18-3=8.58.67. 先做一个边长为 2cm 的等边三角形,再以三个顶点为圆心,2cm 为

    49、半径作弧,形成曲边三角形(如下图)再准备两个这样的图形,把一个固定住(下图中的阴影),另一个围绕着它滚动,如下图那样,从顶点相接的状态下开始滚动请问此图形滚动时经过的面积是多少平方厘米?(3.14)【答案】25.12cm2【分析】在处理图形的运动问题时,描绘出物体的运动轨迹是解决问题的第一步,只有大的方向确定了,才能实施具体的计算在数学中,本题所作出的这个曲边三角形叫“莱洛三角形”,“莱洛三角形”有一个重要的性质就是它在所有方向上的宽度都相同为了求出“莱洛三角形”滚动时经过的面积,可以分 2 步来思考:第 1 步:如图所示,当“莱洛三角形”从顶点 A 的上方滚动到顶点 A 的左边时,这时阴影“

    50、莱洛三角形”滚动的这部分面积是以 A 为圆心、2cm 为半径、圆心角为 60 的扇形在顶点 A、B、C 处各有这样的一个扇形;第 2 步:如图所示,当“莱洛三角形”在边 AB 上滚动时,这时可以把阴影“莱洛三角形”看作是以图中 D 点为圆心的圆的一部分,这个圆在以 C 点为圆心的弧 AB 上滚动,可知此时圆心 D 运动的轨迹是图中的弧 DD,所以此时阴影“莱洛三角形”滚动的这部分面积是以 C 为圆心、4cm 为半径、圆心角为 60 的扇形减去半径为 2cm 的 60 的扇形;综上所述,去掉图中阴影“莱洛三角形”后所形成的组合图形就是要求的面积滚动时经过的面积是:32260360+3426036

    51、0-2260360=8=25.12(cm2).68. 求下图中阴影部分的面积( 取 3)【答案】100 平方厘米【分析】看到这道题,一下就会知道解决方法就是求出空白部分的面积,再通过作差来求出阴影部分面积,因为阴影部分非常不规则,无法入手这样,平移和旋转就成了我们首选的方法(法 1)我们只用将两个半径为 10 厘米的四分之一圆减去空白的 、 部分面积之和即可,其中 、 面积相等易知 、 部分均是等腰直角三角形,但是 部分的直角边 AB 的长度未知单独求 部分面积不易,于是我们将 、 部分平移至一起,如右上图所示,则 、 部分变为一个以 AC 为直角边的等腰直角三角形,而 AC 为四分之一圆的半

    52、径,所以有 AC=10两个四分之一圆的面积和为 150,而 、 部分的面积和为 121010=50,所以阴影部分的面积为150-50100(平方厘米).(法 2)欲求图中阴影部分的面积,可将如上左半图形绕 B 点逆时针方向旋转 180,使 A 与 C 重合,从而构成如右上图的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积所以阴影部分面积为12102-121010=100(平方厘米).69. 草场上有一个长 20 米、宽 10 米的关闭着的羊圈,在羊圈的一角用长 30 米的绳子拴着一只羊(见下图)问:这只羊能够活动的范围有多大?(注: 取 3.14)【答案】2512m2【分

    53、析】如图所示,羊活动的范围可以分为 A,B,C 三部分,其中 A 是半径 30 米的 34 个圆,B,C 分别是半径为 20 米和 10 米的 14 个圆,所以羊活动的范围是30234+20214+10214=30234+20214+10214=2512(m2).70. 如图,正方形 ABCD 边长分别为 1 厘米,依次以 A,B,C,D 为圆心,以 AD,BE,CF,DG 为半径画出四个直角扇形,那么阴影部分的面积是多少?( 取 3.14)【答案】23.55 平方厘米【分析】阴影部分的面积是3.141214+3.142214+3.143214+3.144214=23.55(平方厘米).71.

    54、 如图所示,阴影部分的面积为多少?(圆周率取 3)【答案】2716【分析】图中 A、B 两部分的面积分别等于右边两幅图中的 A、B 的面积所以 SA+SB=1.52-1.534+32-3328=944+98=271672. 如图所示,直角三角形 ABC 的斜边 AB 长为 10 厘米,ABC=60,此时 BC 长5厘米以点 B 为中心,将 ABC 顺时针旋转 120,点 A、C 分别到达点 E、D 的位置求 AC 边扫过的图形即图中阴影部分的面积( 取 3)【答案】75 平方厘米【分析】注意分割、平移、补齐如图所示,将图形(1)移补到图形(2)的位置,因为 EBD=60,那么 ABE=120,

    55、则阴影部分为一圆环的 13所以阴影部分面积为 13AB2-BC2=75(平方厘米)73. 如图所示,阴影部分的面积是多少?( 取 3.14)【答案】4.56【分析】阴影面积为两个半圆的面积之和减去直角三角形的面积,两个半圆的面积之和为 12.56,直角三角形的面积是 8,所以,阴影面积是 4.5674. 左图是一个直径是 3 厘米的半圆,AB 是直径让 A 点不动,把整个半圆逆时针转 60,此时 B 点移动到 C 点,如右图所示那么图中阴影部分的面积是多少平方厘米?( 取 3.14)【答案】略【分析】右图中阴影部分面积等于以 AC 为直径的半圆以及以 AC 为半径的 60 扇形的面积和减去以

    56、AB 为直径的半圆面积那么阴影部分的面积等于以 AC 为半径的 60 扇形的面积,即60360321.53.14=4.71(平方厘米).75. 如图,正方形 ABCD 的边长为 4 厘米,分别以 B、D 为圆心以 4 厘米为半径在正方形内画圆求阴影部分面积( 取 3)【答案】8【分析】由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积解法一:把两个扇形放在一起得到 1 个正方形的同时还重叠了一块阴影部分则阴影部分的面积为 = 1242-44=8;解法二:连接 AC,我们发现阴影部分面积的一半就是扇形

    57、减去三角形的面积,所以阴影部分面积 = 2(1442-442)=876. 下图中正方形 ABCD 及 DCEG 的面积均为 64 平方厘米,EFG 则为一半圆,F 是弧 EFG 的中点请问阴影部分的面积为多少平方厘米?(取 =3.14)【答案】36.56【分析】如下图所示,正方形边长为 8 厘米,连接 GF,阴影部分面积=SAGF+90弓形面积,所以阴影部分面积为12164+14423.14-1244=36.56(平方厘米).77. 如图是一个直径为 3cm 的半圆,让这个半圆以 A 点为轴沿逆时针方向旋转 60,此时 B 点移动到 B 点,求阴影部分的面积(图中长度单位为 cm,圆周率按 3

    58、 计算)【答案】4.5cm2【分析】面积 = 圆心角为 60 的扇形面积 + 半圆 - 空白部分面积(也是半圆)= 圆心角为 60 的扇形面积 =6036032=32=4.5(cm2)78. 下图中五个相同的圆的圆心连线构成一个边长为 10 厘米的正五边形求五边形内阴影部分的面积(=3.14)【答案】117.75 平方厘米【分析】我们用两条线将五边形分成了三个三角形,如下图所示,可以看出,这个五边形的五个角的度数和是 1803=540,540360=1.5 倍,即阴影部分面积相当于 1.5 个半径为 5 的圆的面积,所以阴影部分的面积是 521.5=117.75(平方厘米)79. (1)如左图

    59、所示,三角形 ABC 是等腰直角三角形,以 AC 为直径画半圆,以 BC 为半径画扇形已知 AC=BC=10,那么阴影部分的面积是多少?( 取 3.14)(2)如右图所示,由一个长方形与两个直角扇形构成,其中阴影部分的面积是多少?( 取 3.14)【答案】(1)28.5;(2)12.765【分析】(1)半圆加圆心角是 45 度的扇形面积之和减去直角三角形面积:1252+18102-121010=28.5;(2)阴影面积为两个直角扇形面积之和减去长方形面积:1452+1422-10=12.76580. 如图,BD=DC=DA=1求阴影部分面积【答案】0.6775【分析】方法一:1212-122+

    60、1412=0.6775;方法二:1212-11+122-1412=0.677581. 如图,ABCD 是正方形,且 FA=AD=DE=1,阴影部分的面积是多少?( 取 3.14)【答案】0.6075【分析】连接 BD,将最左边的弓形补过来阴影部分的面积就是平行四边形 BDEC 的面积减去扇形的面积,S阴影=11-3.141245360=0.607582. 如图,ABCD 是平行四边形,AD=8cm,AB=10cm,DAB=30,高 CH=4cm,弧 BE、DF 分别以 AB、CD 为半径,弧 DM、BN 分别以 AD、CB 为半径,则阴影部分的面积为多少?(精确到 0.01)【答案】5.83c

    61、m2【分析】因为四边形 ABCD 是平行四边形,AD=8cm,AB=10cm,DAB=30,所以S扇形EAB=S扇形FCD=10230360=253cm2, S扇形DAM=S扇形BCN=8230360=163cm2 因为平行四边形 ABCD 的高 CH=4 cm,所以 SABCD=104=40cm2 由图中可看出,扇形 EAB 与 FCD 的 面积之和,减去平行四边形 ABCD 的面积,等于曲边四边形 DFBE 的面积;平行四边形 ABCD 的面积减去扇形 DAM 与扇形 BCN 的面积,等于曲边四边形 DMBN 的面积则S阴影=S曲边四边形DFBE-S曲边四边形DMBN=2S扇形EAB-SA

    62、BCD-SABCD-2S扇形DAM=2S扇形EAB+S扇形DAM-SABCD=2253+163-40=24133.14-405.83cm283. 下图中,点 P、Q、R 是三个半径都为 7 厘米的圆之圆心请问图中阴影部分的面积为多少平方厘米?(取 =227)【答案】77【分析】通过割补可将一块阴影变为 16 圆(见右图),题中阴影部分面积为半圆面积即 1222772=77(平方厘米)84. (1)如图 1 所示,有一个长是 10、宽是 6 的长方形,那么两个阴影部分的面积之差为多少( 取 3.14)(2)如图 2 所示,三角形 ABC 是直角三角形,长 40 厘米,以 AB 为直径做半圆,阴影

    63、部分 比阴影部分 的面积小 28 平方厘米求 AC 的长度( 取 3.14)【答案】(1)18.5;(2)32.8【分析】(1)大块“阴影+空白”刚好构成直角扇形,小块“阴影+空白”刚好构成长方形,所以直角扇形与长方形的面积差即是两块阴影面积差 14102-60=18.5(2)“阴影+空白”刚好构成半圆,“阴影+空白”刚好构成直角三角形,半圆面积为 12202=628,所以,直角三角形面积为 628+28=656,另一条直角边 AC=32.885. 如图,长方形的长为 6 厘米,宽为 2 厘米,圆形的半径是 1 厘米,当圆形绕长方形滚动一周又回到原来位置时,扫过的面积有多大?( 取 3.14)

    64、【答案】44.56 平方厘米【分析】扫过的区域如图所示,面积为226+222+22=44.56(平方厘米).86. 图中正方形的边长是 4 厘米,圆形的半径是 1 厘米当圆形绕正方形滚动一周又回到原来位置时,扫过的面积有多大?( 取 3.14)【答案】44.56 平方厘米【分析】扫过的区域如图中阴影所示,由两类图形组成:4 个长为 4 厘米、宽为 2 厘米的长方形,4 块半径为 2 厘米、圆心角为 90 的扇形(恰好拼成一个圆)所以扫过的面积是424+22=44.56(平方厘米).87. 如图,边长为 3 的两个正方形 BDKE、正方形 DCFK 并排放置,以 BC 为边向内侧作等边三角形,分

    65、别以 B、C 为圆心,BK、CK 为半径画弧求阴影部分面积(=3.14)【答案】8.58【分析】根据题意可知扇形的半径 r 恰是正方形的对角线,所以r2=322=18,如上图将左边的阴影翻转右边阴影下部,S阴影=S扇形-S柳叶=60236018-21418-33=18-3=8.58.88. (1)求下列各图的周长和面积各是多少?(用含 的式子表示)(2)已知一个扇形面积为 18.84 平方厘米,圆心角为 60,这个扇形的半径和周长是多少?( 取 3.14)【答案】(1)5+10,1212,712+10,1834,313+10,813;(2)6 厘米,18.28 厘米【分析】(1)半圆的周长25

    66、2+25=5+10,面积522=1212;34 圆的周长2534+25=712+10,面积5234=1834;13 圆的周长25120360+25=313+10,面积5213=813.(2)由于:16r2=18.84,所以 r=6,则扇形的周长为:dfrac16times 2 times rm pi times 6 + 2 times 6 = 18.28text(厘米). 89. 一只狗被拴在底座为边长 3m 的等边三角形建筑物的墙角上(如图),绳长是 4m,求狗所能到的地方的总面积( 取 3.14)【答案】43.96m2【分析】如图所示,狗活动的范围是一个半径 4m,圆心角 300 的扇形与

    67、两个半径 1m,圆心角 120 的扇形之和所以答案是30036042+212036012=43.96m2.90. 在下图中,AC 为圆 O 的直径,三角形 ABC 为等腰直角三角形,其中 C=90以 B 为圆心,BC 为半径作弧 CD 交线段 AB 于 D 点若 AC=10 厘米,试求下图中阴影部分面积之和(令 =3)【答案】62.5 平方厘米【分析】阴影部分面积为圆加扇形减三角形,阴影面积为:52+18102-12102=62.5(平方厘米).91. 如图,正方形边长为 2cm,扇形是以正方形顶点为圆心,以边长为半径的圆的四分之一,求阴影部分面积【答案】4-【分析】阴影面积等于正方形的面积减

    68、去扇形的面积S=22-1422=4-92. 如图所示,一块半径为 2 厘米的圆板,从位置 起始,依次沿线段 AB、BC、CD 滚到位置 如果 AB、BC、CD 的长都是 20 厘米,那么圆板经过区域的面积是多少平方厘米?( 取 3.14,答案保留两位小数)【答案】228.07【分析】小圆滚动时所经过的区域如下图所示半圆 FEQ、半圆 JKL 的面积之和是 4 平方厘米;长方形 FGBQ、BHIP、IJLM 的面积之和是(18+16+14)4=192(平方厘米);60 的扇形 BGH 的面积为1642=83;PIMNO 部分的面积为 (12+) 平方厘米所以总面积为4+192+83+12+=20

    69、4+233228.07(平方厘米).93. 在半径为 1 的圆内,画 13 个点,其中任意 3 点不共线请证明:一定存在 3 个点,以它 们为顶点的三角形面积小于 6【答案】略【分析】证明:将半径为 1 的圆八等分,分为六个扇形,每个扇形的面积是 6,根据抽屉原理,至少有三个点在同部分中,这三个点组成的三角形不会大于所在的扇形,即 694. 如图中的三角形都是等腰直角三角形,求各图中阴影部分的面积( 取 3.14)【答案】4;4.56;8【分析】(1)割补法,将右边的弓形补到左边,两块阴影面积之和恰好为等腰直角三角形面积的一半即 4422=4(2)割补法,如图,将图中的叶子形从中间分成面积相等

    70、的两个小弓形,阴影部分可拼成一个完整弓形,面积为 14443.14-1244=4.56(3)割补法,正好是把第二问的过程反过来,把两个小弓形补到空白部分,阴影部分面积之和正好是等腰直角三角形的面积,即 442=895. 如图所示,扇形 AOB 的圆心角是 90 度,半径是 2,C 是弧 AB 的中点求两个阴影部分的面积差( 取 3.14)【答案】0【分析】两个阴影分别加上下部的空白部分可得到扇形和半圆,而扇形和半圆面积相等,所以,面积之差是 096. 有一飞镖形建筑物 ABCD,其各边之长度如下图所示,AB=60 米、BC=70 米、CD=40 米、AD=30 米,并且已知 ADC=90在其外

    71、围拟建一条步道,使得此步道的外缘距离建筑物之最近距离都保持 5 米请问沿着此步道之外缘绕一圈共需走多少米?(取 =3.14)【答案】229.25【分析】可知步道可分为直线段与圆弧段,直线段之长度和为 60+70+(30-5)+(40-5)=190(米)而三个圆弧的角度和为 360+90=450所以三个圆弧段的长度和为 253.14450360=39.25(米)故绕一圈需走 190+39.25=229.25(米)97. 如图,三角形 ABC 为等边三角形,边长为 2,D 为 BC 边中点,分别以 B,C 为圆心,1 为半径作两个扇形(即图中阴影部分),那么阴影部分的面积是多少?( 取 3.14,结果保留 2 位小数)【答案】1.05【分析】阴影部分是两个 60 的扇形,面积是 3.14121621.05

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【机构秘籍】小学奥数题库《几何》-曲线型-扇形-3星题(含解析)全国通用版【唯一店:教师学科网资料】.docx
    链接地址:https://www.ketangku.com/wenku/file-809364.html
    相关资源 更多
  • 人教版五年级下册数学 期末测试卷附答案【巩固】.docx人教版五年级下册数学 期末测试卷附答案【巩固】.docx
  • 人教版五年级下册数学 期末测试卷附答案【实用】.docx人教版五年级下册数学 期末测试卷附答案【实用】.docx
  • 人教版五年级下册数学 期末测试卷附答案【完整版】.docx人教版五年级下册数学 期末测试卷附答案【完整版】.docx
  • 人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【基础题】.docx人教版五年级下册数学 期末测试卷附答案【基础题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优】.docx人教版五年级下册数学 期末测试卷附答案【培优】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx
  • 人教版五年级下册数学 期末测试卷附答案【典型题】.docx人教版五年级下册数学 期末测试卷附答案【典型题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【b卷】.docx人教版五年级下册数学 期末测试卷附答案【b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【a卷】.docx人教版五年级下册数学 期末测试卷附答案【a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案ab卷.docx人教版五年级下册数学 期末测试卷附答案ab卷.docx
  • 人教版五年级下册数学 期末测试卷附答案.docx人教版五年级下册数学 期末测试卷附答案.docx
  • 人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精选题).docx人教版五年级下册数学 期末测试卷附完整答案(精选题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精品).docx人教版五年级下册数学 期末测试卷附完整答案(精品).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(有一套).docx人教版五年级下册数学 期末测试卷附完整答案(有一套).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(易错题).docx人教版五年级下册数学 期末测试卷附完整答案(易错题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(必刷).docx人教版五年级下册数学 期末测试卷附完整答案(必刷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(典优).docx人教版五年级下册数学 期末测试卷附完整答案(典优).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1