分享
分享赚钱 收藏 举报 版权申诉 / 16

类型【机构秘籍】小学奥数题库《行程问题》-典型行程-接送问题基本知识-0星题(含详解)全国通用版【唯一店:教师学科网资料】.docx

  • 上传人:a****
  • 文档编号:809432
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:16
  • 大小:159.93KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    唯一店:教师学科网资料
    资源描述:

    1、行程-典型行程-接送问题基本知识-0星题课程目标知识点考试要求具体要求考察频率接送问题基本知识C1.理解接送问题的运动过程,抓住变化规律。2.运用行程中的比例关系进行解答。少考知识提要接送问题基本知识 常见接送问题类型车速不变-班数不变-班数 2 个(最常见)车速不变-班速不变-班数多个车速不变-班速变-班数 2 个车速变-班速不变-班数 2 个 问题描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明 标准解法画图+列 3 个式子1. 总时间一个队伍坐车的时间 + 这个队伍步行的时间;2. 班车走的总路程;3. 一个队伍步行的时间班车同

    2、时出发后回来接它的时间。精选例题接送问题基本知识 1. 每天父亲下班后刚好可以在学校放学时赶到学校接女儿回家一天,学校提早放学,女儿自己回家,走 10 分钟后碰到父亲来接,坐父亲摩托车回家,到家时比平时迟到 1 分钟,原因是父亲下班迟了 7 分钟,那么学校提早放学 分钟【答案】6 分钟【分析】父亲骑摩托车比平时少了 7-1=6(分钟),62=3(分钟),即父亲接到女儿时再向前 3 分钟就可以到达学校,所以父亲 3 分钟与女儿 10 分钟所行路程相同;女儿放学比平时早 10-(7-3)=6(分钟) 2. 某校学生要到距离学校 235 千米的营地参加军训现有一辆汽车,一次可乘坐一半学生一半学生从学

    3、校步行出发,汽车也于同一时间载着另一半学生出发至途中某地,乘车的学生下车后继续步行前往营地,汽车立即返回,在途中与另一半步行学生相遇,再接他们前往营 地已知学生步行速度每小时 5 千米,汽车搭载学生时每小时行驶 50 千米,空车返回时每小时行驶 55 千米,则所有学生到达营地,最快需要 小时【答案】11【分析】方法一:要最快到达,那么就是说汽车先把一半学生送了一段路程后放下这些学生继续步行,然后回头接另一半学生,然后两者同时到达营地我们把先步行的一半学生称为学生一,把先乘车的学生称为学生二设汽车经过 t 小时后放下学生二回头:汽车回行用时为 (50t-5t)(55+5)=34t,这段时间内汽车

    4、行驶了 34t55=1654t,学生一和学生二都走了 34t5=154t;此时,学生二和汽车相距 1654t+154t=45t,那么追及时间是 45t(50-5)=t,这段时间内汽车行驶了 50t,学生二走了 5t5t+154t+50t=235,解得 t=4,那么总时间是 t+34t+t=11(小时)方法二:如下图所示,假设实线代表汽车行驶的路线,虚线代表两部分学生行走的路线,由于满载时车速是人速的 10 倍,所以在相同的时间内车行驶的路程是步行路程的 10 倍,假设开始第一部分学生步行 1 份到达 C 点,汽车行驶 10 分钟到达 E 点开始返回,而返回汽车和第一部分学生共行驶 9 份才会相

    5、遇,由于返回车速变为 55,所以汽车返回行驶 95555+5=334 份与第一部分学生行驶了 955+55=34 份到达 D 点相遇,同时第二部分学生也步行 34 份,到达 F 点,此时汽车与第一部分学生相差 9 份路程,这样第二部分学生再行驶 1 份,与第一部分学生同时到达终点 B,所以第一部分学生要步行 2351+3410+1+34=235747=35(千米),乘车 235-35=200(千米),因此共用时间为 355+20050=11(小时) 3. 小雪下午 2:00 从家出发去学校,同时她的父亲从家骑摩托车出发去学校父亲在 2:40 到了学校,立刻调转车头,在距离家 6 千米的地方迎面

    6、遇上了小雪,然后,他带上了小雪驶向学校,在 3:00 时到了学校那么,小雪的家距离学校有 千米【答案】8 千米【分析】父亲骑摩托车从家到学校需要 40 分钟,调头接到小雪到学校用 20 分钟,所以从接到小雪至到达学校父亲共用 10 分钟,占全程的 1040=14,全程为 61-14=8(千米) 4. 张工程师每天早上 8 点准时被司机从家接到厂里一天,张工程师早上 7 点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前 20 分钟这天,张工程师还是早上 7 点出门,但 15 分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么

    7、这次他比平常要提前 分钟【答案】10 分钟【分析】张工程师到厂时提前 20 分钟,对司机来说是因为他少走了一段路,这段也就是张工程师走过的路程的 2 倍(来回),可见这段路程司机原来需要 20 分钟,那么一个单程 10 分钟,倒推可知司机 7:50 接到了张工程师,此时张工程师从 7:00 到 7:50 已经走了 50 分钟,同一段路程时间比 1:5,第二天,实际上可以看做是张工程师 7:30 出门,同样在某一时刻会遇上司机,张工程师从 7:30 到这个时刻的时间,是司机 8:00 倒退到这个时刻的时间的 5 倍,利用和倍 30(5+1)=5(分钟),这个时刻是 7:55,司机原来走这个单位需

    8、要 5 分钟,而这天少走了这个单程的两倍(来回),那么这天张工程师提前 10 分钟到 5. 某校和某工厂之间有一条公路,该校下午 2 时派车去该厂接某劳模来做报告,往返需用 1 小时这位劳模在下午 1 时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午 2 时 40 分到达问:汽车速度是劳模步行速度的几倍?【答案】8【分析】车下午 2 时从学校出发,如图,在 C 点与劳模相遇,再返回 B 点,共用时 40 分钟,由此可知,在从 B 到 C 用了 402=20 分钟,也就是 2 时 20 分在 C 点与劳模相遇此时劳模走了 1 小时 20 分,也就是 80 分钟另一方面,汽车

    9、走两个 AB 需要 1 小时,也就是从 B 点走到 A 点需要 30 分钟,而前面说走完 BC 需要 20 分钟,所以走完 AC 要 10 分钟,也就是说 BC=2AC走完 AC,劳模用了 80 分钟;走完 BC,汽车用了 20 分钟劳模用时是汽车的 4 倍,而汽车行驶距离是劳模的 2 倍,所以汽车的速度是劳模速度的 42=8(倍) 6. 甲班与乙班学生同时从学校出发去相距 170 千米的公园,甲乙两班的步行的速度都是每小时 4 千米学校有一辆汽车,它的速度是每小时 48 千米,这辆汽车恰好能坐一个班的学生为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米?【答

    10、案】683 千米【分析】由于两班速度相同,所以要使时间最少,必须同时出发,同时到达,而且行走的路程要相同(教师可以用最大最小问题来解释),画图如下:在某一班行走 BC 的时间内,车行走的路程就是 CAB,即 CB+AB+BA,这样得出 AD:BA=1:5.5,所以总路程分成 1+5.5+1=7.5 份,所以每份=1707.5=683千米,所以每班走一份=683千米 7. 陕西关中地区某村的兄弟四人要去距离该村 63 千米的杨凌参观农高会,兄弟几人的步行速度为每小时 6 千米,但只有老大有一辆每次最多可乘 2 人(包括骑摩托人)且每小时最大速度为 42 千米的摩托车,要使兄弟四人尽快到达农高会,

    11、求这兄弟四人由本村到农高会最短时间是多少?(农高会是农业高科技展览会的简称)【答案】4.5 小时【分析】如下图所示,四兄弟分别记为甲、乙、丙、丁,由甲骑摩托车来回接送、其他三人走路,四人同时出发、同时到达所用时间最短人速记为 Vr,车速记为 Vc,则有 Vr:Vc=6:42=1:7,首先讨论甲和乙,甲将丁送到 E 地后返回与乙在 C 相遇,设 AC=1 份,则 AE+EC=7 份,所以有 CE=3 份,同理 CD=EF=FB=1 份,全程 AB=6 份,636=10.5(千米),按照丙来计算,所用总时间为 10.526+10.5442=4.5(小时) 8. AB 两个连队同时分别从两个营地出发

    12、前往一个目的地进行演习,A 连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A 连士兵坐车出发一定时间后下车让卡车回去接 B 连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为 32 千米,士兵行军速度为 8 千米/小时,卡车行驶速度为 40 千米每小时,求两营士兵到达目的地一共要 小时【答案】1.6【分析】由于卡车的速度为士兵行军速度的 5 倍,因此卡车折回时已走的路程是 B 连士兵遇到卡车时已走路程的 3 倍,而卡车折回所走的路程是 B 连士兵遇到卡车时已走路程的 2 倍,卡车接到 B 连士兵后,还要行走 3 倍 B 连士兵遇到卡车时已走路程才能

    13、追上 A 连士兵,此时他们已经到达了目的地,因此总路程相当于 4 倍 B 连士兵遇到卡车时已走路程,所以 B 连士兵遇到卡车时已走路程为 8 千米,而卡车的总行程为 (3+2+3)8=64 千米,这一段路,卡车行驶了 6440=85 小时,即1小时 36 分钟这也是两营士兵到达目的地所花的时间 9. 某人要到 60 千米外的农场去,开始他以 6 千米/时的速度步行,后来有辆速度为 18 千米/时的拖拉机把他送到了农场,总共用了 6 小时问:他步行了多远?【答案】24 千米【分析】求步行路程,而且步行速度已知,需要求步行时间如果 6 小时全部乘拖拉机,可以行进:186=108(千米),108-6

    14、0=48(千米)其中,这 48 千米的距离是在某段时间内这个人在行走而没有乘拖拉机因此少走的距离,这样我们就可以求出行走的时间为:48(18-6)=4(小时)即这个人走了 4 个小时,距离为:64=24(千米)即这个人步行了 24 千米另外本题通过画矩形图将会更容易解决:其中矩形的长表示时间,宽表示速度,由路程 = 速度 时间可知,矩形的面积表示的是路程,通过题意可以知道阴影部分的面积等于 60,大矩形的面积为186=108所以小矩形的面积为:108-60=48又因为小矩形的宽为18-6=12所以小矩形的长为:4812=4所以“?”处矩形的面积为46=24(千米)“?”表示的是步行的路程,即步

    15、行的路程为 24 千米10. A、B 两个连队同时分别从两个营地出发前往一个目的地进行演习,A 连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A 连士兵坐车出发一定时间后下车让卡车回去接 B 连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为 32 千米,士兵行军速度为 8 千米/小时,卡车行驶速度为 40 千米每小时,求两营士兵到达目的地一共要多少时间?【答案】1 小时 36 分钟【分析】由于卡车的速度为士兵行军速度的 5 倍,因此卡车折回时已走的路程是 B 连士兵遇到卡车时已走路程的 3 倍,而卡车折回所走的路程是 B 连士兵遇到卡车时已走路程

    16、的 2 倍,卡车接到 B 连士兵后,还要行走 3 倍 B 连士兵遇到卡车时已走路程才能追上 A 连士兵,此时他们已经到达了目的地,因此总路程相当于 4 倍 B 连士兵遇到卡车时已走路程,所以 B 连士兵遇到卡车时已走路程为 8 千米,而卡车的总行程为 (3+2+3)8=64(千米),这一段路,卡车行驶了 6440=85(小时),即 1 小时 36 分钟这也是两营士兵到达目的地所花的时间11. 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是 4 千米/小时,学校有一辆汽车,它的速度是每小时 48 千米,这辆汽车恰好能坐一个班的学生为了使两班学生在最短时间内到达公园,设两地相距 150

    17、 千米,那么各个班的步行距离是多少千米?【答案】20【分析】由于汽车速度是甲乙两班步行速度的 12 倍,设乙班步行 1 份,汽车载甲班到 A 点开始返回到 B 点相遇,这样得出 BD:BA=1:(12-1)2=1:5.5,汽车从 A 点返回最终与乙班同时到达 C 点,汽车又行走了 12 份,所以总路程分成 1+5.5+1=7.5(份),所以 每份=1507.5=20(千米),所以各个班的步行距离为 20 千米12. 甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时 4 千米,乙班步行的速度是每小时 3 千米学校有一辆汽车,它的速度是每小时 48 千米,这辆汽车恰好能坐一个班的学生为了

    18、使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是 【答案】15:11【分析】不妨设乙班学生先步行,汽车将甲班学生送至 A 地后返回,在 B 处接到乙班学生,最后汽车与乙班学生同时到达公园V甲:V乙=1:12,V乙:V车=1:16乙班从 C 至 B 时,汽车从 CAB,则两者路程之比为 1:16,不妨设 CB=1,则 CAB=16,CA=(116)2=8.5,则有 CB:BA=1:7.5;类似设 AD=1,分析可得 AD:BA=1:5.5,综合得 CB:BA:AD=22:165:30,说明甲乙两班步行的距离之比是 15:11若设甲班先步行,结果同上13. 甲、乙两班学生

    19、到离校 39 千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的 10 倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?【答案】6【分析】如图所示,当甲班乘车至 C 处后下车,然后步行至博物馆,车则返回去接乙班,至 B 处时恰好与乙班相遇,然后载着乙班直接到博物馆由于甲、乙两班学生要同时到达,他们所用的时间是相同的,而总路程也相同,那么他们乘车的路程和步行

    20、的路程也分别相同,也就是说图中 AB 与 CD 相等又乙班走完 AB 时,汽车行驶了从 A 到 C 再从 C 到 B 这一段路程,由于汽车速度是他们步行速度的 10 倍,所以汽车走的这段路程是 AB 的 10 倍,可得 BC 是 AB 的 10-12=4.5 倍,那么全程 AD 是 AB 的 6.5 倍,也是 CD 的 6.5 倍,所以 CD 为 396.5=6 千米,即汽车应在距博物馆 6 千米处返回接乙班14. 某学校学生计划乘坐旅行社的大巴前往郊外游玩,按照计划,旅行社的大巴准时从车站出发后能在约定时间到达学校,搭载满学生在预定时间到达目的地,已知学校的位置在车站和目的地之间,大巴车空载

    21、的时候的速度为 60 千米/小时,满载的时候速度为 40 千米/小时,由于某种原因大巴车晚出发了 56 分钟,学生在约定时间没有等到大巴车的情况下,步行前往目的地,在途中搭载上赶上来的大巴车,最后比预定时间晚了 54 分钟到达目的地,求学生们的步行速度【答案】4 千米/小时【分析】大巴车空载的路程每多 60 千米,满载的路程就会少 60 千米,全程所花的时间就会少6040-6060=0.5(小时)=30(分钟)现在大巴车比原计划全程所花时间少了56-54=2(分钟)所以,所以大巴车空载的路程比原计划多了60230=4(千米)也就是说,大巴车抵达学校后又行驶了 4 千米才接到学生,此时学生们已经

    22、出发了56+46060=60(分钟)即 1 小时,所以学生们的步行速度为 4 千米/小时15. 两辆同一型号的汽车从同一地点同时出发,沿同一方向同速直线前进,每车最多能带 20 桶汽油(连同油箱内的油)每桶汽油可以使一辆汽车前进 60 千米,两车都必须返回出发地点,两辆车均可借对方的油,为了使一辆车尽可能地远离出发点,那么这辆车最远可达到离出发点多少千米远的地方?【答案】900【分析】甲乙两车从同一地点同时出发,沿同一方向同速直线前进,每车最多能带 20 桶汽油(连同油箱内的油)每桶汽油可以使一辆汽车前进 60 千米,两车都必须返回出发地点为了使一辆车(例如甲车)尽可能地远离出发点,则甲、乙车

    23、同行,各耗掉 a 桶油时,乙车停下,并把甲车加满油(恰好加 a 桶),还需留下 2a 桶油供甲车返回到此地时补给甲(a 桶)和自己(a 桶)供返回原地时用所以乙车 20桶=4a,a=5(桶) 即甲车共向乙车最多借 2a=10(桶) 油,所以甲车最远可达到离出发点 (10+20)602=900(千米) 远的地方必须返回16. 甲、乙两班学生到离校 24 千米的飞机场参观,已知只有一辆汽车,一次只能乘坐一个班的学生为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则立即返回接在途中步行的乙班学生如果甲、乙两班学生步行速度相同,都是 5 千

    24、米/时,汽车的速度为 35 千米/时请问:汽车应在距飞机场多少千米处返回接乙班学生,才能使两班学生同时到达飞机场?【答案】4.8【分析】因为甲、乙速度相同,考虑车和乙即可,画图如下:如图所示:因为汽车速度是 35 千米/时,乙步行速度 5 千米/时从出发到接 上乙、汽车和乙的路程比是 7:1设乙走 1 份,则汽车走了 7 份,于是汽车送甲共走 (1+7)2=4 份,所以甲共坐车 4 份因为甲、乙步行路程相同,坐车路程也相同,所以乙也坐车 4 份所以 1 份路程是 2415=4.8 千米,所以汽车应在距飞机场 4.8 千米处返回接乙班学生,才能使两班同时到达飞机场17. 海淀区劳动技术学校有 1

    25、00 名学生到离学校 33 千米的郊区参加采摘活动,学校只有一辆限乘 25 人的中型面包车为了让全体学生尽快地到达目的地决定采取步行与乘车相结合的办法已知学生步行的速度是每小时 5 千米,汽车行驶的速度是每小时 55 千米请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?【答案】2.6【分析】由于 100 名学生要分 4 次乘车,分别命名为甲、乙、丙、丁四组,且汽车的速度是步行速度的 11 倍,乙组步行 1 份路程,则汽车载甲组行驶 6 份,放下甲组开始返回与乙组的学生相遇,汽车载乙组追上甲组,把乙组放下再返回,甲组也步行了 1 份,丙组、丁组步行的路程和乙组相同,如图所示,所以

    26、全程为 6+1+1+1=9(份),恰好是 33 千米,其中汽车行驶了 3396=22(千米),共步行了 33-22=11(千米),所以全体学生到达目的地的最短时间为 2255+115=2.6(小时)18. 设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 3 倍现甲从 A 地去 B 地,乙、丙从 B 地去 A 地,双方同时出发出发时,甲、乙为步行,丙骑车途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己重又步行,三人仍按各自原有方向继续前进问:三人之中谁最先达到自己的目的地?谁最后到达目的地?【答案

    27、】丙最先到,甲最后到【分析】由于每人的步行速度和骑车速度都相同,所以,要知道谁先到、谁后到,只要计算一下各人谁骑行最长,谁骑行最短将整个路程分成 4 份,甲、丙最先相遇,丙骑行 3 份;甲先步行了 1 份,然后骑车与乙相遇,骑行 234=32(份);乙步行 1+2-32=32(份),骑行 4-32=52(份),可知,丙骑行的最长,甲骑行的最短,所以,丙最先到,甲最后到19. 现有两只球队同时从某地到 9 千米外的体育馆进行比赛,但只有一辆汽车接送,且每次只能乘坐一支球队已知队员步行速度均为 6 千米/时;汽车满载的速度为 27 千米/时,空载的速度为 36 千米/时请问:比赛最早会在两队出发后

    28、多少分钟开始?(两队均到场即可开始)【答案】37.5 分钟【分析】本题中车速不同,人速相同,所以两个队的步行路程相同,两个队坐车的路程也相同设这两队分别为 A 队和 B 队,假设先送 A 队,画出车和 B 队的行程图:假设 A 队坐车共走 9 份路程,则此时 B 队走 2 份路程,车和 B 队相距 7 份因为 B 队步行和车空载时的速度比是 1:6,所以他们相遇时,B 队又走 1 份,车又走 6 份因为 A 队共乘车 9 份,所以 B 队也要乘车 9 份,所以 B 队共步行 9312=94 千米,共乘车 9-94=274 千米,需要 946+27427=58小时=37.5分钟20. 一支轻骑摩

    29、托小分队奉命把一份重要文件送到距驻地很远的指挥部每辆摩托车装满油最多能行 150 千米,且途中没有加油站由于一辆摩托车无法完成任务,队长决定派两辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另一辆则在中途供给油料后安全返回驻地请问:指挥部距小分队驻地最远可能是多少千米?【答案】200【分析】假设这两辆车分别为 A 车和 B 车,A 车负责把文件送到指挥部,很明显,让 A 车走的最远的方案是两辆车都走 50 千米后,B 车把自己的油给 A 车加满,然后 B 车刚好返回驻地,A 车继续走 150 千米,所以指挥部距小分队驻地最远可能是 150+50=200 千米21. 甲、乙、丙三个班的学

    30、生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为 5 千米/小时,大巴车的行驶速度为 55 千米/小时,出发地到终点之间的距离为 8 千米,求这些学生到达终点一共所花的时间【答案】2855 小时【分析】如图所示:虚线为学生步行部分,实线为大巴车行驶路段,由于大巴车的速度是学生的 11 倍,所以大巴车第一次折返点到出发点的距离是乙班学生搭车前步行距离的 6 倍,

    31、如果将乙班学生搭车前步行距离看作是一份的话,大巴车第一次折返点到出发点的距离为 6 份,大巴车第一次折返到接到乙班学生又行驶了 5 分距离, 如此大巴车一共行驶了 6+5+6+5+6=28(份) 距离,而 A 到 F 的总距离为 8 份,所以大巴车共行驶了 28 千米,所花的总时间为 2855 小时22. 甲、乙两班学生到离校 24 千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的

    32、7 倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?【答案】4.8【分析】设学生步行时速度为“1”,那么汽车的速度为“7”,有如下示意图我们让甲班先乘车,那么当乙班步行至距学校 l 处,甲班已乘车至距学校 7l 处此时甲班下车步行,汽车往回行驶接乙班,汽车、乙班将相遇汽车、乙班的距离为 7l-l=6l,两者的速度和为 7+1=8,所需时间为 6l8=0.75l,这段时间乙班学生又步行 0.75l 的路程,所以乙班学生共步行 l+0.75l=1.75l 后乘车而行应要求甲、乙班同时出发、同时到达,且甲、乙两班步行的速度相等,所以甲班也应在步行 1.75l 路程后达到飞

    33、机场,有甲班经过的全程为 7l+1.75l=8.75l,应为全程所以有 7l=248.757=19.2 千米,即在距学校 19.2 千米的地方甲班学生下车步行,此地距飞机场 24-19.2=4.8 千米即汽车应在距飞机场 4.8 千米的地方返回接乙班学生,才能使两班同时到达飞机场23. 甲、乙、丙三人从 A 地出发向 B 地前进,A、B 两地之间的距离为 18.6 千米已知甲步行速度为 3 千米/时,骑车速度为 15 千米/时,乙步行速度为 6 千米/时,骑车速度为 15 千米/时,丙步行速度为 5 千米/时,骑车速度为 18 千米/时现在只有一辆自行车,请通过合理安排使得甲、乙、丙在最短时间

    34、内同时到达 B 地,那么至少需要多少分钟?(骑车可以带人,但只能带一人)【答案】11323 分钟【分析】本题就是一道往返接送的题目,解决的关键是谁骑车载人,注意到 3 点: 甲走得最慢,如果让他骑车可以弥补这个缺点; 丙骑得最快,让他骑车带人是不错的选择; 乙走得快,却和甲骑得一样快,所以乙和甲相比,乙要走路;乙走得快,却比丙骑得慢,所以,乙和丙相比,乙要走路并且甲、丙相比无法很明显地看出优劣,所以我们无法确定让甲还是丙骑车带人,甚至可能出现途中一会甲带人,一会丙带人的情况先不分析的将所有情况写出来:(1)甲一直骑车;(2)丙一直骑车;(3)甲带乙,甲接丙,丙带甲;(4)甲带丙,丙接乙,丙带乙

    35、;(5)丙带甲,甲接乙,甲带乙;(6)丙带乙,丙接甲,甲带丙很明显,(4)、(6)中都出现了甲带丙,这两人一起走的时候明显要丙带甲才快,所以排除同理(1)中也会出现甲带丙,排除(3)、(5)明显花的时间是一样的,所以只能算一种综上,我们只要计算(2)丙一直骑车;(3)甲带乙,甲接丙,丙带甲这两个方案即可分別利用往返接送的方法计算得方案(2)的时间为 11323 分钟方案(3)的时间为 1151115 分钟所以至少需要 11323 分钟24. A、B 两地相距 120 千米,已知人的步行速度是每小时 5 千米,摩托车的行驶速度是每小时 50 千米,摩托车后座可带一人问:有三人并配备一辆摩托车从

    36、A 地到 B 地最少需要多少小时?(保留位小数)【答案】5.7【分析】本题实际上是一个接送问题,要想使所用的时间最少,三人应同时到达假设这三人分别为甲、乙、丙由于摩托车只可同时带两个人,所以可安排甲一直骑摩托车,甲先带乙到某一处,丙则先步行,甲将乙带到后再折回去接丙,乙开始步行,最后三人同时到达要想同时到达,则乙与丙步行的路程和乘车的路程都应相等如下图所示由于丙从 A 从走到 D 的时间内甲从 A 到 C 再回到 D,相同的时间内二者所行的路程之比等于速度的比,而两者的速度比为 50:5=10:1,所以 DC=10-12AD=4.5AD,全程 AB=4.5+1+1AD=6.5AD,所以从 A

    37、地到 B 地所用的时间为:12016.55+1205.56.550=372655.7(小时)25. 甲、乙两班同学到 42 千米外的少年宫参加活动,但只有一辆汽车,且一次只能坐一个班的同学,已知学生步行速度相同为 5 千米小时,汽车载人速度是 45 千米小时,空车速度是 75 千米/小时如果要使两班同学同时到达,且到达时间最短,那么这个最短时间是多少?【答案】2 小时【分析】行车路线如上图所示,设甲,乙两班步行路程为 1,车开出 x 后返回接乙班由车与乙相遇的过程可知:15=x45+x-175,解得 x=6因此,车开出 4211+6=36(千米)后,放下甲班回去接乙,甲班需步行 42-36=6

    38、(千米),共用时 364536-175=2(小时)26. 兄弟两人骑马进城,全程 51 千米马每时行 12 千米,但只能由一个人骑哥哥每时步行 5 千米,弟弟每时步行 4 千米两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行而步行者到达此地,再上马前进若他们早晨 6 点动身,则 时 分能同时到达城里【答案】16;15【分析】设弟弟先骑马,且骑了 x 千米后下马,且剩余 (51-x) 千米改为步行,则哥哥步行 x 千米后,剩余 (51-x) 千米改为骑马因要求同时出发且同时抵达目的地,故花费时间应该相同因此可得:x12+51-x4=x5+51-x12,解得

    39、 x=30所以一共花费了 3012+51-204=414(小时)=10时15分,所以 6:00+10:15=16:15,则他们 16:15 能同时到达城里27. 某种小型飞机加满油最多能飞行 1500 千米,但不够从 A 地飞到 B 地如果从 A 地派 3 架这样的飞机,通过实现空中供油,可以使其中一架飞机飞到 B 地,另两架安全返回 A 地,那么 A、B 两地最远相距多少千米?【答案】2250 千米【分析】设 3 架飞机分别为甲、乙、丙,让甲飞机飞到 B 地,乙、丙两架飞机给甲飞机供油稍加分析,就可以知道以下的方案是最佳的:甲、乙、丙同时起飞,中途 C 点的时候,丙将油分给甲和乙,使甲、乙满

    40、油前进,到达 D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到 B,如图所示设能支持飞机飞行 1500 千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过 4 个 AC,那么 AC 的长度为 15004=375 千米然后考虑,乙的“1”份油支持甲、乙走过 3 个 CD 段和乙单独走过 1 个 AC 段(返回时)可知,CD 段的长度是 (1500-375)3=375 千米,然后甲满油走过 DB 为 1500 千米,此时 AB 的路程是 375+375+1500=2250 千米,为 AB 的最远距离28. A、B 两地相距 30 千米,甲乙丙三人同时从 A 到 B,而且要求同时到达

    41、现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑已知骑自行车的平均速度为每小时 20 千米,甲步行的速度是每小时 5 千米,乙和丙每小时 4 千米,那么三人需要多少小时可以同时到达?【答案】3.3【分析】因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些现在考虑甲和乙丙步行路程的距离甲多步行 1 千米要用 15 小时,乙多骑车 1 千米用 120 小时,甲多用 15-120=320 小时甲步行 1 千米比乙少用 14-15=120 小时,所以甲比乙多步行的路程是乙步行路程的:120320=1

    42、3这样设乙丙步行路程为 3 份,甲步行 4 份如下图安排:这样甲骑车行骑车的 35,步行 25所以时间为:303520+30255=3.3 小时29. 甲乙两人同时从学校出发去距离 33 千米外的公园,甲步行的速度是每小时 4 千米,乙步行的速度是每小时 3 千米他们有一辆自行车,它的速度是每小时 5 千米,这辆车只能载一个人,所以先让其中一人先骑车到中途,然后把车放下之后继续前进,等另一个人赶到放车的位置后再骑车赶去,这样使两人同时到达公园那么放车的位置距出发点多少千米?【答案】9 和 24【分析】根据两人到达公园所花时间相等这一等量关系可列出方程,设放车的位置距出发点 x 千米,如果甲先骑

    43、车,方程为:x3+33-x5=33-x4+x5,如果乙先骑车,方程为:x4+33-x5=33-x3+x5,两个方程分别解得 x=9 和 x=24,所以有 9 千米和 24 千米两种答案30. 某乡镇小学的师生到县城参观,规定汽车从县城出发,于上午 7 时到达学校接参观的师生去县城由于汽车在赴校的途中发生了障碍,不得不停车修理,学校师生等到 7 时 10 分,仍未见汽车来接,就步行走向县城在行进途中遇到了已经修理好的汽车,立即上车赶赴县城,结果比原定到达县城的时间晚了 30 分钟如果汽车的速度是步行速度的 6 倍,问汽车在途中排除故障花了多少时间?【答案】38 分钟【分析】假定汽车排除障碍花了 x 分钟如图,设点 A 为县城所在地,点 C 为学校所在地,点 B 为师生途中与汽车相遇之处在师生们晚到县城的 30 分里,有 10 分钟是因晚出发造成的,还有 20 分钟是由于从 C 到 B 步行代替乘车而耽误的汽车所晚的 30 分钟,一方面是排除障碍耽误了 x 分钟,另一方面少跑了 B 到 C 之间的一个来回而省下的时间已知汽车速度是步行速度的 6 倍,而从 C 到 B 步行比乘车要多花 20 分钟由此知汽车由 C 到 B 应花 206-1=4(分钟)一个来回省下了 8 分钟所以,x-8=30,解得 x=38所以,汽车在途中排除故障花了 38 分钟

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【机构秘籍】小学奥数题库《行程问题》-典型行程-接送问题基本知识-0星题(含详解)全国通用版【唯一店:教师学科网资料】.docx
    链接地址:https://www.ketangku.com/wenku/file-809432.html
    相关资源 更多
  • 人教版数学二年级下册期末综合素养提升题(考试直接用)word版.docx人教版数学二年级下册期末综合素养提升题(考试直接用)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(考试直接用).docx人教版数学二年级下册期末综合素养提升题(考试直接用).docx
  • 人教版数学二年级下册期末综合素养提升题(考点梳理)word版.docx人教版数学二年级下册期末综合素养提升题(考点梳理)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(网校专用)word版.docx人教版数学二年级下册期末综合素养提升题(网校专用)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(网校专用).docx人教版数学二年级下册期末综合素养提升题(网校专用).docx
  • 人教版数学二年级下册期末综合素养提升题(综合卷).docx人教版数学二年级下册期末综合素养提升题(综合卷).docx
  • 人教版数学二年级下册期末综合素养提升题(精选题)word版.docx人教版数学二年级下册期末综合素养提升题(精选题)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(突破训练)word版.docx人教版数学二年级下册期末综合素养提升题(突破训练)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(有一套).docx人教版数学二年级下册期末综合素养提升题(有一套).docx
  • 人教版数学二年级下册期末综合素养提升题(易错题)word版.docx人教版数学二年级下册期末综合素养提升题(易错题)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(完整版)word版.docx人教版数学二年级下册期末综合素养提升题(完整版)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(完整版).docx人教版数学二年级下册期末综合素养提升题(完整版).docx
  • 人教版数学二年级下册期末综合素养提升题(夺冠系列).docx人教版数学二年级下册期末综合素养提升题(夺冠系列).docx
  • 人教版数学二年级下册期末综合素养提升题(含答案).docx人教版数学二年级下册期末综合素养提升题(含答案).docx
  • 人教版数学二年级下册期末综合素养提升题(名师系列)word版.docx人教版数学二年级下册期末综合素养提升题(名师系列)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(原创题).docx人教版数学二年级下册期末综合素养提升题(原创题).docx
  • 人教版数学二年级下册期末综合素养提升题(历年真题)word版.docx人教版数学二年级下册期末综合素养提升题(历年真题)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(全国通用)word版.docx人教版数学二年级下册期末综合素养提升题(全国通用)word版.docx
  • 人教版数学二年级下册期末综合素养提升题(全优)word版.docx人教版数学二年级下册期末综合素养提升题(全优)word版.docx
  • 人教版数学二年级下册期末综合素养提升题附答案(达标题).docx人教版数学二年级下册期末综合素养提升题附答案(达标题).docx
  • 人教版数学二年级下册期末综合素养提升题附答案(综合题).docx人教版数学二年级下册期末综合素养提升题附答案(综合题).docx
  • 人教版数学二年级下册期末综合素养提升题附答案(完整版).docx人教版数学二年级下册期末综合素养提升题附答案(完整版).docx
  • 人教版数学二年级下册期末综合素养提升题附答案(a卷).docx人教版数学二年级下册期末综合素养提升题附答案(a卷).docx
  • 人教版数学二年级下册期末综合素养提升题附答案下载.docx人教版数学二年级下册期末综合素养提升题附答案下载.docx
  • 人教版数学二年级下册期末综合素养提升题附答案【达标题】.docx人教版数学二年级下册期末综合素养提升题附答案【达标题】.docx
  • 人教版数学二年级下册期末综合素养提升题附答案【考试直接用】.docx人教版数学二年级下册期末综合素养提升题附答案【考试直接用】.docx
  • 人教版数学二年级下册期末综合素养提升题附答案【综合题】.docx人教版数学二年级下册期末综合素养提升题附答案【综合题】.docx
  • 人教版数学二年级下册期末综合素养提升题附答案【突破训练】.docx人教版数学二年级下册期末综合素养提升题附答案【突破训练】.docx
  • 人教版数学二年级下册期末综合素养提升题附答案【实用】.docx人教版数学二年级下册期末综合素养提升题附答案【实用】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1