分享
分享赚钱 收藏 举报 版权申诉 / 7

类型【考前三个月】(江苏专用)2022高考数学 数学思想方法篇 专题3 关于分类讨论的再研究.docx

  • 上传人:a****
  • 文档编号:811055
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:7
  • 大小:90.23KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    考前三个月
    资源描述:

    1、【考前三个月】(江苏专用)2022高考数学 数学思想方法篇 专题3 关于分类讨论的再研究 方法精要在解某些数学问题时,我们常常会遇到这样一种情况;解到某一步之后,发现问题的发展是按照不同的方向进行的当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合分合”的解决问题的思想,就是分类讨论法分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法有关分类讨论思想的数学问题具有明

    2、显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置1中学数学中可能引起分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列an的前n项和公式等(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等(5)由参数的

    3、变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等2进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论其中最重要的一条是“不重不漏”3解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论题型一分类讨论在概念、计算中的应用例1设集合AxR|x24x0,BxR|x22

    4、(a1)xa210,aR,若BA,求实数a的值破题切入点BA可分B,BA,BA三种情况,所以此题需分类并结合一元二次方程根的情况加以研究解A0,4,BA,于是可分为以下几种情况(1)当AB时,B0,4,由根与系数的关系,得解得a1.(2)当BA时,又可分为两种情况当B时,即B0或B4,当x0时,有a1;当x4时,有a7或a1.又由4(a1)24(a21)0,解得a1,此时B0满足条件;当B时,4(a1)24(a21)0,解得a1.综合(1)(2)知,所求实数a的取值为a1或a1.题型二分类讨论在含参函数中的应用例2已知函数f(x)x22ax1a在x0,1上有最大值2,求a的值破题切入点本题中函

    5、数的定义域是确定的,二次函数的对称轴是不确定的,二次函数的最值问题与对称轴息息相关,因此需要对对称轴讨论,分对称轴在区间内和对称轴在区间外,从而确定函数在给定区间上的单调性,即可表示函数的最大值,从而求出a的值解函数f(x)x22ax1a(xa)2a2a1,对称轴方程为xa.(1)当a1时,f(x)maxf(1)a,a2.综上可知,a1或a2.题型三分类讨论在图象中的应用例3设F1、F2为椭圆1的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且PF1PF2,求的值破题切入点直角三角形关键是确定直角顶点,由PF1PF2知,需分PF2F1和F1PF2分别为直角两种情况即可

    6、解若PF2F190,则PFPFF1F,又PF1PF26,F1F22,解得PF1,PF2,.若F1PF290,则F1FPFPF,PF(6PF1)220,又PF1PF2,PF14,PF22,2.综上知,或2.题型四分类讨论在数列求和中的应用例4已知等差数列an的前3项和为6,前8项和为4.(1)求数列an的通项公式;(2)设bn(4an)qn1 (q0,nN*),求数列bn的前n项和Sn.破题切入点在解决等比数列求和问题时,要按公比q是否为1进行讨论解(1)设数列an的公差为d,由已知,得解得故an3(n1)4n.(2)由(1)可得bnnqn1,于是Sn1q02q13q2nqn1.若q1,将上式两

    7、边同时乘以q,得qSn1q12q2(n1)qn1nqn.两式相减,得(q1)Snnqn1q1q2qn1nqn.于是,Sn.若q1,则Sn123n.综上,Sn总结提高分类讨论思想的应用必须以分类与整合思想作指导在考虑对解决的问题进行分类时,通常要注意如下几点:有些概念就是分类定义的,如绝对值的概念等有的运算法则和定理、公式是分类给出的,例如等比数列的求和公式就分为q1和q1两种情况;指数、对数函数的单调性就分为a1,0a0,a0,0,4不符合要求A、B在左、右两支上,有两条所以共3条3函数ytan xsin x|tan xsin x|在区间(,)内的图象是_答案解析函数ytan xsin x|t

    8、an xsin x|4设f(x)则不等式f(x)2的解集为_答案(1,2)(,)解析要求出满足题意的不等式的解集,需有或分别解这两个不等式组,得1x.5已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y2x上,则cos 2_.答案解析取终边上一点(a,2a),a0,根据任意角的三角函数定义,可得cos ,故cos 22cos21.6已知变量x,y满足的不等式组表示的是一个直角三角形围成的平面区域,则实数k_.答案或0解析不等式组表示的可行域如图(阴影部分)所示,由图可知若不等式组表示的平面区域是直角三角形,只有直线ykx1与直线x0垂直(如图)或直线ykx1与直线y2x垂直(如图)时

    9、,平面区域才是直角三角形由图形可知斜率k的值为0或.7(2022扬州模拟)抛物线y24px (p0)的焦点为F,P为其上的一点,O为坐标原点,若OPF为等腰三角形,则这样的点P的个数为_答案4解析当POPF时,点P在线段OF的中垂线上,此时,点P的位置有两个;当OPOF时,点P的位置也有两个;对FOFP的情形,点P不存在事实上,F(p,0),若设P(x,y),则FOp,FP,若p,则有x22pxy20,又y24px,x22px0,解得x0或x2p,当x0时,不构成三角形当x2p(p0)时,与点P在抛物线上矛盾所以符合要求的点P一共有4个8.在等比数列an中,已知a3,S3,则a1_.答案或6解

    10、析当q1时,a1a2a3,S33a1,显然成立;当q1时,由题意,得所以由,得3,即2q2q10,所以q或q1(舍去)当q时,a16.综上可知,a1或a16.9已知函数f(x)ax33x1对于x1,1总有f(x)0成立,则a_.答案4解析若x0,则不论a取何值,f(x)0显然成立;当x0即x(0,1时,f(x)ax33x10可化为a.设g(x),则g(x),所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)maxg4,从而a4;当x0,g(x)在区间1,0)上单调递增,因此g(x)ming(1)4,从而a4.综上知a4.10(2022苏州模拟)已知抛物线y22px(p0)的焦点为F,

    11、A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系解(1)抛物线y22px的准线为x,由题意得45,所以p2,所以抛物线的方程为y24x.(2)由题意知,圆M的圆心为点(0,2),半径为2.当m4时,直线AK的方程为x4,此时,直线AK与圆M相离;当m4时,由(1)知A(4,4),则直线AK的方程为y(xm),即4x(4m)y4m0,圆心M(0,2)到直线AK的距离d,令d2,解得m1.所以,当m1时,直线A

    12、K与圆M相离;当m1时,直线AK与圆M相切;当m1时,直线AK与圆M相交11设关于x的函数y2cos2x2acos x(2a1)的最小值为f(a),试确定满足f(a)的a的值,并求此时函数的最大值解令cos xt,t1,1,则y2t22at(2a1)2(t)22a1,关于t的二次函数的对称轴是t,当1,即a1,即a2时,函数y在t1,1上是单调递减,所以f(a)f(1)4a1,解得a,这与a2矛盾;当11,即2a2时,f(a)2a1,即a24a30,解得a1或a3,因为2a2,所以a1.所以y2t22t1,t1,1,所以当t1时,函数取得最大值ymax2215.12已知a是实数,函数f(x)(

    13、xa)(1)求函数f(x)的单调区间;(2)设g(a)为f(x)在区间0,2上的最小值写出g(a)的表达式;求a的取值范围,使得6g(a)2.解(1)函数的定义域为0,),f(x)(x0)若a0,则f(x)0,f(x)有单调递增区间0,)若a0,令f(x)0,得x,当0x时,f(x)时,f(x)0.f(x)有单调递减区间0,有单调递增区间(,)(2)由(1)知,若a0,f(x)在0,2上单调递增,所以g(a)f(0)0.若0a6,f(x)在0,上单调递减,在(,2上单调递增,所以g(a)f().若a6,f(x)在0,2上单调递减,所以g(a)f(2)(2a)综上所述,g(a)令6g(a)2.若a0,无解若0a6,解得3a6.若a6,解得6a23.故a的取值范围为3a23.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【考前三个月】(江苏专用)2022高考数学 数学思想方法篇 专题3 关于分类讨论的再研究.docx
    链接地址:https://www.ketangku.com/wenku/file-811055.html
    相关资源 更多
  • 人教版小学数学五年级下册重点题型专项练习含答案(综合题).docx人教版小学数学五年级下册重点题型专项练习含答案(综合题).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(综合卷).docx人教版小学数学五年级下册重点题型专项练习含答案(综合卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(精练).docx人教版小学数学五年级下册重点题型专项练习含答案(精练).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(突破训练).docx人教版小学数学五年级下册重点题型专项练习含答案(突破训练).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(研优卷).docx人教版小学数学五年级下册重点题型专项练习含答案(研优卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(最新).docx人教版小学数学五年级下册重点题型专项练习含答案(最新).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(新).docx人教版小学数学五年级下册重点题型专项练习含答案(新).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(巩固).docx人教版小学数学五年级下册重点题型专项练习含答案(巩固).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(实用).docx人教版小学数学五年级下册重点题型专项练习含答案(实用).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(完整版).docx人教版小学数学五年级下册重点题型专项练习含答案(完整版).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(夺分金卷).docx人教版小学数学五年级下册重点题型专项练习含答案(夺分金卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(培优).docx人教版小学数学五年级下册重点题型专项练习含答案(培优).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(培优B卷).docx人教版小学数学五年级下册重点题型专项练习含答案(培优B卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(培优A卷).docx人教版小学数学五年级下册重点题型专项练习含答案(培优A卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(名师推荐).docx人教版小学数学五年级下册重点题型专项练习含答案(名师推荐).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(典型题).docx人教版小学数学五年级下册重点题型专项练习含答案(典型题).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(B卷).docx人教版小学数学五年级下册重点题型专项练习含答案(B卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(A卷).docx人教版小学数学五年级下册重点题型专项练习含答案(A卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案解析.docx人教版小学数学五年级下册重点题型专项练习含答案解析.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【黄金题型】.docx人教版小学数学五年级下册重点题型专项练习含答案【黄金题型】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【达标题】.docx人教版小学数学五年级下册重点题型专项练习含答案【达标题】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【轻巧夺冠】.docx人教版小学数学五年级下册重点题型专项练习含答案【轻巧夺冠】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【能力提升】.docx人教版小学数学五年级下册重点题型专项练习含答案【能力提升】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【考试直接用】.docx人教版小学数学五年级下册重点题型专项练习含答案【考试直接用】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【综合题】.docx人教版小学数学五年级下册重点题型专项练习含答案【综合题】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【综合卷】.docx人教版小学数学五年级下册重点题型专项练习含答案【综合卷】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【突破训练】.docx人教版小学数学五年级下册重点题型专项练习含答案【突破训练】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【研优卷】.docx人教版小学数学五年级下册重点题型专项练习含答案【研优卷】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【满分必刷】.docx人教版小学数学五年级下册重点题型专项练习含答案【满分必刷】.docx
  • 相关搜索
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1