【课后延时】小学数学专项《应用题》经典牛吃草问题基本知识-5星题(含解析)全国通用版【唯一店:教师学科网资料】.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 唯一店:教师学科网资料
- 资源描述:
-
1、应用题-经典应用题-牛吃草问题基本知识-5星题课程目标知识点考试要求具体要求考察频率牛吃草问题基本知识C1.了解牛吃草问题的概念。2.能够准确理解牛吃草的解题原理。3.可以熟练运用牛吃草公式来解决牛吃草问题。少考知识提要牛吃草问题基本知识 概述牛吃草问题:又称为消长问题,是英国伟大的科学家牛顿在他的一书中提出的一个数学问题,所以也称为“牛顿问题”,俗称“牛吃草问题”解决该问题要抓住两个关键量:草的生长速度和草原的原草量 公式:设定1头牛1天吃草量为“1”;(1)草的生长速度=(对应牛的头数 吃的较多的天数-对应牛的头数 吃的较少天数)(吃的较多天数-吃的较少天数)(2)原有草量=牛的头数 吃的
2、天数-草的生长速度 吃的天数(3)吃的天数=原有草量 (牛的头数-草的生长速度)(4)牛的头数=原有草量 吃的天数+草的生长速度。 牛吃草的变型“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题精选例题牛吃草问题基本知识 1. 一个大型的污水池存有一定量的污水,并有污水不断流入,若安排 4 台污水处理设备,36 天可将池中的污水处理完;若安排 5 台污水处理设备,27 天可将池中的污水处理完;若安排 7 台污水处理设备, 天可将池中的污水处理完【答案】18【分析】牛吃草问题变形不妨设一台污水处理设备一天处理一
3、份污水,每天新流入的污水:(436-527)(36-27)=1(份).原有的污水量:436-136=108(份).分牛法:1 台污水处理设备处理每天新流入的污水,剩下 6 台设备处理原有污水108(7-1)=18(天). 2. 解放军战士在洪水不断冲毁大坝的过程中要修好大坝若 10 人需 45 分钟,20 人需 20 分钟,则 14 人修好大坝需 分钟【答案】30【分析】设每个人 1 分钟修好 1 份1045=450(份),2020=400(份),每分钟新冲毁:(450-400)(45-20)=2(份),原先冲毁:450-245=360(份),360(14-2)=30(分钟). 3. 小方用一
4、个有洞的杯子从水缸里往三个同样的容积的空桶中舀水第一个桶距水缸有 1 米,小方用 3 次恰好把桶装满;第二个桶距水缸有 2 米,小方用 4 次恰好把桶装满第三个桶距水缸有 3 米,那么小方要多少次才能把它装满?(假设小方走路的速度不变,水从杯中流出的速度也不变)【答案】6【分析】小方装第二个桶比第一个桶多用了一杯水,同时多走了 24-135(米) 路,所以从杯中流出的速度是 150.2(杯/米),于是 1 桶水原有水量等于 3-30.22.4(杯) 水,所以小方要 2.4(1-30.2)6(次) 才能把第三个桶装满 4. 如下图所示,一块正方形草地被分为完全相同的四块以及中间的阴影部分已知草一
5、开始是均匀分布,且以恒定的速度均匀生长但如果某块地上的草被吃光,就不再生长(因为草根也被吃掉了)老农先带着一群牛在 1 号草地上吃草,两天后把 1 号草地上的草全部吃完(这期间其他草地的草正常生长)之后他让一半牛在 2 号草地上吃草,另一半在 3 号草地上吃草,结果又过了 6 天,这两个草地上的草也全部吃完最后,老农把 35 的牛放在阴影草地上吃草,而剩下的牛放在 4 号草地上,最后发现两块草地上的草同时吃完如果一开始就让这群牛在整块草地上吃草,那么吃完这些草需要多少天?【答案】110【分析】设牛的头数为 2,5=10 头,设一头牛一天吃一份草,所以 1,2,3,4 号草地的生长速度为(56-
6、102)6=53,原有草量为210-532=503,阴影分配牛的头数是 4 的 1.5 倍,所以阴影草地的成长速度和原有草量都是 4 号的 1.5 倍,所以整块草地的生长速度为534+531.5=556,原有草量为5034+5031.5=2753,一开始就让这群牛在整块草地上吃草,那么吃完这些草需要275310-556=110(天).方法二:假设 1 至 4 号草地每块面积为 a,生长速度为 v,1 号草地 2 天吃完,草总量为 a+2v;2 号和 3 号草地,接着 6 天吃完,草总量为 2a+16v;6 天吃完的草总量应为 2 天吃完草总量的 3 倍,即:3(a+2v)2a+16v,可得 a
7、10v,牛群每天吃草 6v;又 35 的牛放在阴影部分的草地中吃草,另外 25 的牛放在 4 号草地吃草,它们同时把草场上的草吃完,说明阴影部分为 4 号草地的 1.5 倍;相当于整个草地面积为 5.5a,即 55v,每天长草 5.5v,于是,草可吃55v6v-5.5v=110(天). 5. 有一牧场,草均匀生长,17 头牛 30 天可将草吃完,19 头牛则 24 天可以吃完现有若干头牛吃了 6 天后,卖掉了 4 头牛,余下的牛再吃两天便将草吃完问:原来有多少头牛吃草?【答案】40 头【分析】设 1 头牛 1 天的吃草量为“1”,那么每天生长的草量为:(1730-1924)(30-24)=9,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-811560.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
陕西省蓝田县焦岱中学人教版高中英语必修一课件:UNIT 5 NELSON MANDELA - A MODERN HERO READING2 .ppt
