专题02中线四大模型在三角形中的应用(能力提升)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题02 中线四大模型在三角形中的应用能力提升原卷版 专题 02 中线 四大 模型 三角形 中的 应用 能力 提升 原卷版
- 资源描述:
-
1、专题02 中线四大模型在三角形中的应用(能力提升)1直角三角形中有两条边的长分别为4,8,则此直角三角形斜边上的中线长等于()A4B4C4或4D4或22如图,点D是RtABC的斜边BC的中点,点E、F分别在边AB、AC上,且BEBDCF,连接DE、DF,若DE7,DF10,则线段BE的长为 3如图所示,已知四边形ABCD,R、P分别是DC、BC上的点,点E、F分别是AP、RP的中点,当点P在边BC上从点B向点C移动,且点R从点D向点C移动时,那么下列结论成立的是()A线段EF的长逐渐增大B线段EF的长逐渐减少C线段EF的长不变DABP和CRP的面积和不变4求证:直角三角形斜边上的中线等于斜边的
2、一半已知:如图,在ABC中,ABC90,点O是AC的中点求证:OBAC证明:延长BO到D,使ODOB,连接AD、CD,中间的证明过程排乱了:ABC90,OBOD,OAOC,四边形ABCD是平行四边形,四边形ABCD是矩形ACBD,OBBDAC则中间证明过程正确的顺序是()ABCD5如图,AB为O的直径,CA与O相切于点A,BC交O于点D,E是的中点,连接OE并延长交AC于点F,若BDCD,AB5,则AF的长为()ABCD46如图,将ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:EFAB且2EFAB;BAFCAF;S四边形ADEFAFDE;BDF+FEC2BAC,正确的个数是()A1
3、B2C3D47矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BCEF4,CDCE2,则GH 8如图,在ABC中,延长CA到点D,使ADAC,点E是AB的中点,连接DE,并延长DE交BC于点F,已知BC4,则BF 9如图,ABC中,ABAC,点D在AC上,连接BD,ABD的中线AE的延长线交BC于点F,FAC60,若AD5,AB7,则EF的长为 10如图,阅读下面的题目及分析过程,并按要求进行证明已知:如图,E是BC的中点,点A在DE上,且BAECDE求证:ABCD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判
4、定和性质,观察本题中要证ABCD,必须添加适当的辅助线,构造全等三角形或等腰三角形请根据上述分析写出详细的证明过程(只需写一种思路)11如图所示,D是ABC边BC的中点,E是AD上一点,满足AEBDDC,FAFE求ADC的度数12(1)如图1,在ABC中,B60,C80,AD平分BAC求证:ADAC;(2)如图2,在ABC中,点E在BC边上,中线BD与AE相交于点P,APBC求证:PEBE13数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在ABC中,AB8,AC6,D是BC的中点,求BC边上的中线AD的取值范围小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DEAD,再证
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020中考物理核心考点专题简单机械复习训练pdf.pdf
