分享
分享赚钱 收藏 举报 版权申诉 / 30

类型专题02 全等模型-半角模型(解析版).docx

  • 上传人:a****
  • 文档编号:827623
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:30
  • 大小:2.51MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题02 全等模型-半角模型解析版 专题 02 全等 模型 半角 解析
    资源描述:

    1、专题02 全等模型-半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。半角模型(题中出现角度之间的半角关系)利用旋转证全等得到相关结论.1(2022湖北十堰中考真题)【阅读材料】如

    2、图,四边形中,点,分别在,上,若,则【解决问题】如图,在某公园的同一水平面上,四条道路围成四边形已知,道路,上分别有景点,且,若在,之间修一条直路,则路线的长比路线的长少_(结果取整数,参考数据:) 【答案】370【分析】延长交于点,根据已知条件求得,进而根据含30度角的直角三角形的性质,求得,从而求得的长,根据材料可得,即可求解【详解】解:如图,延长交于点,连接,是等边三角形,,在中,中,中,是等腰直角三角形由阅读材料可得,路线的长比路线的长少答案:370【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键2(2022河北邢台九年级期末)学完旋转这一章,老师给同学们

    3、出了这样一道题:“如图1,在正方形ABCD中,EAF45,求证:EFBEDF”小明同学的思路:四边形ABCD是正方形,ABAD,BADC90把ABE绕点A逆时针旋转到的位置,然后证明,从而可得,从而使问题得证(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD中,ABAD,BD90,直接写出EF,BE,DF之间的数量关系(2)【应用】如图3,在四边形ABCD中,ABAD,BD180,求证:EFBEDF(3)【知识迁移】如图4,四边形ABPC是的内接四边形,BC是直径,ABAC,请直接写出PBPC与AP的关系【答案】(1)BEDFEF(2)证明见解(3)【分析】(1)将AB

    4、E绕A点逆时针旋转,旋转角等于BAD得,证明AEF,等量代换即得结论;(2)将ABE绕点A逆时针旋转,旋转角等于BAD,先证明EAF=,再证明AEF,等量代换即得结论;(3)将ABP绕点A逆时针旋转90得到,先利用圆内接四边形的性质证明P,C,在同一直线上,再证明为等腰直角三角形,等量代换即得结论(1)解:结论:BEDFEF,理由如下:证明:将ABE绕点A逆时针旋转,旋转角等于BAD,使得AB与AD重合,点E转到点的位置,如图所示,可知,由ADC+=180知,C、D、共线,BAF+DAF=EAF,+DAF=EAF=,AEF,EF=BE+DF(2)证明:将ABE绕点A逆时针旋转,旋转角等于BAD

    5、,使得AB与AD重合,点E转到点的位置,如图所示,由旋转可知,BADC180,点C,D,在同一条直线上,AFAF,即BEDFEF(3)结论:,理由如下:证明:将ABP绕点A逆时针旋转90得到,使得AB与AC重合,如图所示,由圆内接四边形性质得:AC+ACP=180,即P,C,在同一直线上,BC为直径,BAC=90=BAP+PAC=CA+PAC=,为等腰直角三角形,即【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点解题关键是利用旋转构造全等三角形3(2022福建龙岩九年级期中)(1)【发现证明】如图1,在正方形中,点,分

    6、别是,边上的动点,且,求证:小明发现,当把绕点顺时针旋转90至,使与重合时能够证明,请你给出证明过程(2)【类比引申】如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,之间的数量关系_(不要求证明)如图3,如果点,分别是,延长线上的动点,且,则,之间的数量关系是_(不要求证明).(3)【联想拓展】如图1,若正方形的边长为6,求的长【答案】(1)见解析;(2)不成立,结论:;,见解析;(3)【分析】(1)证明,可得出,则结论得证;(2)将绕点顺时针旋转至根据可证明,可得,则结论得证;将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则

    7、,在中,得出关于的方程,解出则可得解【详解】(1)证明:把绕点顺时针旋转至,如图1,三点共线,;(2)不成立,结论:;证明:如图2,将绕点顺时针旋转至,;如图3,将绕点逆时针旋转至,即故答案为:(3)解:由(1)可知,正方形的边长为6,设,则,在中,解得:,【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导4(2022山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图

    8、1,在正方形ABCD中,E、F分别是AB、BC边上的点,且EDF45,探究图中线段EF,AE,FC之间的数量关系【模型应用】(2)如图2,如果四边形ABCD中,ABAD,BADBCD90,EAF45,且BC7,DC13,CF5,求BE的长【拓展提高】(3)如图3,在四边形ABCD中,ABAD,ABC与ADC互补,点E、F分别在射线CB、DC上,且EAFBAD当BC4,DC7,CF1时,CEF的周长等于 (4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AHMN,且AHAB,连接BD分别交AM、AN于点E、F,若MH2,NH3,DF2,求EF的长(5)如图5,已知菱形ABC

    9、D中,B=60,点E、F分别是边BC,CD上的动点(不与端点重合),且EAF=60连接BD分别与边AE、AF交于M、N,当DAF15时,求证:MN2+DN2=BM2【答案】(1)EF=FC+AE,理由见解析;(2)BE=5;(3)13;(4)EF=;(5)见解析【分析】(1)求证DEFDMF,即可推出EF与FM的数量关系;(2)在DC上取一点G,使得DG=BE,证明ABEADG(SAS),推出AE=AG,BAE=DAG,证明AFEAFG(SAS),推出EF=FG,设BE=x,则CG=13-x,EF=FG=18-x,在RtECF中,根据EF2=EC2+CF2,构建方程求出x即可解决问题;(3)证

    10、明ADMABE(SAS)和EAFMAF,即可求解;(4)先求出BM,DN,进而求出正方形的边长,再判断出EAF=45,借助探究的结论即可得出结论(5)将ADF绕A顺时针旋转120,AD与AB重合,F转到G,在AG上取AH=AN,连接BH、MH,利用ABHADN和AMHAMN,证明MN=MH,DN=BH,再证明BMH为直角三角形即可【详解】(1)EF=FC+AE,理由如下:证明:将DAE绕点D逆时针旋转90,得到DCM,DAEDCM,DE=DM,AE=CM,ADE=CDM,B、C、M三点共线,EDF=45,ADE+FDC=CDM+FDC=MDF=45,在DEF和DMF中,DEFDMF(SAS),

    11、EF=FMEF=FM=FC+CM=FC+AE;(2)解:如图,在DC上取一点G,使得DG=BE,BAD=BCD=90,ABC+D=180,ABE+ABC=180,ABE=D,AB=AD,BE=DG,ABEADG(SAS),AE=AG,BAE=DAG,EAF=45,EAB+BAF=DAG+BAF=45,BAD=90,FAG=FAE=45,AE=AG,AF=AF,AFEAFG(SAS),EF=FG,设BE=x,则EC=EB+BC=x+7,EF=FG=18-x,在RtECF中,EF2=EC2+CF2,52+(7+x)2=(18-x)2,x=5,BE=5;(3)解:在DF上截取DM=BE,D+ABC=

    12、ABE+ABC=180,D=ABE,AD=AB,ADMABE(SAS),AM=AE,DAM=BAE;EAF=BAE+BAF=BAD,MAF=BAD,EAF=MAF;AF是EAF与MAF的公共边,EAFMAF,EF=MF;MF=DF-DM=DF-BE,EF=DF-BECEF的周长=CE+EF+FC=BC+BE+DC+CF-BE+CF=BC+CD+2CF=13,故答案为:13;(4)解:四边形ABCD是正方形,AB=AD,ABC=ADC=90,AHMN,AHM=ABC=90,在RtAMB和RtAMH中,RtAMBRtAMH,MAB=MAH,BM=MH=2,同理可证RtANDRtANH,NAD=NA

    13、H,DN=NH=3,2MAH+2NAH=90,MAH+NAH=45,MAN=45设正方形的边长为a,CM=a-2,CN=a-3,根据勾股定理得,(a-2)2+(a-3)2=25,a=-1(舍)或a=6,BC=6,BD=6,逆时针旋转ABE至ADG,ABEADG,AE=AG,ABE=ADG=45,GDF=ADG+ADB=90,连接GF,根据勾股定理得,GF2=DG2+DF2=BE2+DF2,ABEADG,AE=AG,BAE=DAG,GAF=DAG+DAF=BAE+DAF=90-EAF=45=EAF,AF=AF,GAFEAF,GF=EF,EF2=BE2+AD2;设EF=x,BD=6,DF=2BE=

    14、6-2-x=4-x,(4-x)2+(2)2=x2,解得x=,EF=;(3)将ADF绕A顺时针旋转120,此时AD与AB重合,F转到G,在AG上取AH=AN,连接BH、MH,如图:ADF绕A顺时针旋转得ABG,BAG=DAF,又AH=AN,AB=AD,ABHADN(SAS),DN=BH,ABH=ADN,B=60,且EAF=60BAD=120,DAF+BAE=EAF=60,BAG+BAE=EAF,即MAH=MAN,而AH=AN,AM=AM,AMHAMN(SAS),MN=MH,AMN=AMH,菱形ABCD,B=60,ABD=ADB=30,HBD=ABH+ABD=60,DAF=15,EAF=60,AD

    15、M中,DAM=AMD=75,AMN=AMH=75,HMB=180-AMN-AMH=30,BHM=90,BH2+MH2=BM2,DN2+MN2=BM2【点睛】本题是四边形综合题,主要考查了旋转的性质、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题课后专项训练:1(2022重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,B=ADC=90,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中BAE、FAD、EAF之间的数量关

    16、系小王同学探究此问题的方法是:延长FD到点G,使DG=BE连接AG,先证明ABEADG,再证明AEFAGF,可得出结论,他的结论应是_;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,B+D=180E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,ABC+ADC=180,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出EAF与DAB的数量关系【答案】(1)BAE+FAD=EAF;(2)仍成立,理由见解析;(3)EAF=180-DAB【分析】(1)延长F

    17、D到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定ADGABE,再判定AEFAGF,得出FAE=FAG,最后根据FAE+FAG+GAE=360,推导得到2FAE+DAB=360,即可得出结论【详解】解:(1)BAE+FAD=EAF理由

    18、:如图1,延长FD到点G,使DG=BE,连接AG,B=ADF=90,ADG=ADF=90,B=ADG=90,又AB=AD,ABEADG(SAS),BAE=DAG,AE=AG,EF=BE+FD=DG+FD=GF,AF=AF,AEFAGF(SSS),EAF=GAF=DAG+DAF=BAE+DAF;故答案为:BAE+FAD=EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,B+ADF=180,ADG+ADF=180,B=ADG,又AB=AD,ABEADG(SAS),BAE=DAG,AE=AG,EF=BE+FD=DG+FD=GF,AF=AF,AEFAGF(SSS),EAF=G

    19、AF=DAG+DAF=BAE+DAF;(3)EAF=180-DAB证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,ABC+ADC=180,ABC+ABE=180,ADC=ABE,又AB=AD,ADGABE(SAS),AG=AE,DAG=BAE,EF=BE+FD=DG+FD=GF,AF=AF,AEFAGF(SSS),FAE=FAG,FAE+FAG+GAE=360,2FAE+(GAB+BAE)=360,2FAE+(GAB+DAG)=360,即2FAE+DAB=360,EAF=180-DAB【点睛】本题属于三角形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问

    20、题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等2(2022江西九江一模)如图(1),在四边形ABCD中,以点A为顶点作,且,连接EF(1)观察猜想如图(2),当时,四边形ABCD是_(填特殊四边形的名称);BE,DF,EF之间的数量关系为_(2)类比探究如图(1),线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由(3)解决问题如图(3),在中,点D,E均在边BC上,且,若,求DE的长【答案】(1)正方形;BE+ DF=EF(2)详见解析(3)详见解析【分析】(1)根据正方形的判定定理即可得出;延长CD至

    21、点G,使得DG=BE,证得,得出,由,证得,从而得出BE,DF,EF之间的数量关系;(2)同(1)即可得出BE,DF,EF之间的数量关系;(3)作,且,证得,同(1)证得,在中,由勾股定理可解得DE的长(1)解:,四边形ABCD是矩形,又,矩形ABCD是正方形如下图,延长CD至点G,使得DG=BE,即,又,即 (2)如下图,延长CD至点H,使得DH=BE,同(1)的证明方法得,同理证,从而得(3)如图过点C作,且,在中, 由, ,同(1)的证明方法得,设,则,在中,由勾股定理得,解得,即【点睛】本题考查了特殊的平行四边形的判定、全等三角形的性质和判定及勾股定理的应用,熟练应用相关定理和性质是解

    22、决本题的关键3(2022山东聊城九年级期末)(1)如图,点,分别在正方形的边,上,连接,求证:,试说明理由(2)类比引申:如图,四边形中,点,分别在边,上,EAF=45,若、都不是直角,则当与满足等量关系_时,仍有,试说明理由 (3)联想拓展:如图,在中,点,均在边上,且DAE=45,若,求的长【答案】(1)见解析,(2),理由见解析;(3)【分析】把绕点逆时针旋转至,可使与重合,证出,根据全等三角形的性质得出,即可得出答案;把绕点逆时针旋转至,可使与重合,证出,根据全等三角形的性质得出,即可得出答案;把旋转到的位置,连接,证明AFG(SAS),则C=ABF=45,是直角三角形,根据勾股定理即

    23、可得出答案【详解】证明:如图中, ,把绕点逆时针旋转至,与重合ADC=B=90FDG=180,点F、D、G三点共线,则,FAG=FAD+GAD=FAD+BAE=90-45=45=EAF即EAF=FAG,在和中, ,EF=FG=BE+DF;当,仍有理由:,把绕点逆时针旋转至,可使与重合,如图,B=ADG,BAE+DAF=45,FAG=45EAF=FAG,ADC+ADG=180FDG=180,点、共线在和中,AFG(SAS),即:故答案为:将绕点旋转到的位置,连接,则FAB=CAE,BAD+CAE=45又FAB=CAE,FAB+BAD=45,FAD=DAE=45则在和中, ,FAD=DAE,C=A

    24、BFC+ABD=90ABF+ABD=90,是直角三角形BD2+BF2=DF2,BD2+CE2=DE2,BD=1,【点睛】本题属于几何变换综合题,考查了旋转的性质,全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线得出全等三角形4(2022黑龙江九年级阶段练习)已知:正方形ABCD中,MAN=45,MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N当MAN绕点A旋转到BM=DN时,(如图1),易证BM+DN=MN(1)当MAN绕点A旋转到BMDN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当MAN绕点A旋转

    25、到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想【答案】(1),理由见解析;(2),理由见解析【分析】(1)把绕点顺时针旋转,得到,然后证明得到,从而证得,可得结论;(2)首先证明,得,再证明,得,可得结论;(1)解:理由如下:如图2,把绕点顺时针旋转,得到,点,点,点三点共线,又,在与中,(SAS),;(2)解:理由如下:在线段上截取,在与中,(SAS),在和中,(SAS),【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题5(2022重庆南川九年级期中)

    26、如图,正方形中,绕点顺时针旋转,它的两边分别交、或它们的延长线于点、(1)当绕点旋转到时如图,证明:;(2)绕点旋转到时如图,求证:;(3)当绕点旋转到如图位置时,线段、和之间有怎样的数量关系?请写出你的猜想并证明【答案】(1)见解析(2)见解析(3),见解析【分析】(1)把绕点顺时针旋转,得到,证得、三点共线,即可得到,从而证得;(2)证明方法与(1)类似;(3)在线段上截取,判断出,同(2)的方法,即可得出结论(1)证明:如图, 把绕点顺时针旋转,得到,四边形是正方形,点、三点共线,又,在与中,(2)证明:如图,把绕点顺时针旋转,得到,四边形是正方形,点、三点共线,又,在与中,(3)解:

    27、理由如下:如图,在线段上截取,连接,在与中,在和中,【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键6(2022江西景德镇九年级期中)(1)【特例探究】如图1,在四边形中,猜想并写出线段,之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形中,请写出线段,之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(处)北偏东20的处舰艇乙在指挥中心南偏西50的处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇

    28、乙沿北偏西60的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达,处,且指挥中心观测两舰艇视线之间的夹角为75请直接写出此时两舰艇之间的距离【答案】(1)EF=BE+DF,理由见解析;(2)EF=BE+DF,理由见解析;(3)85海里【分析】(1)延长CD至点G,使DG=BE,连接AG,可证得ABEADG,可得到AE=AG,BAE=DAG,再由,可证得AEFAGF,从而得到EF=FG,即可求解;(2)延长CD至点H,使DH=BE,连接AH,可证得ABEADH,可得到AE=AH,BAE=DAH,再由,可证得AEFAHF,从而得到EF=FH,即可求解; (3)连接CD,延

    29、长AC、BD交于点M,根据题意可得AOB=2COD,OAM+OBM=70+110=180,再由(2)【迁移推广】得:CD=AC+BD,即可求解【详解】解:(1)EF=BE+DF,理由如下:如图,延长CD至点G,使DG=BE,连接AG, ,ADG=ABC=90,AB=AD,ABEADG,AE=AG,BAE=DAG,BAE+DAF=50,FAG=EAF=50,AF=AF,AEFAGF,EF=FG,FG=DG+DF,EF=DG+DF=BE+DF;(2)EF=BE+DF,理由如下:如图,延长CD至点H,使DH=BE,连接AH,ADC+ADH=180,ADH=ABC,AB=AD,ABEADH,AE=AH

    30、,BAE=DAH,EAF=BAE+DAF=DAF+DAH,EAF=HAF,AF=AF,AEFAHF,EF=FH,FH=DH+DF,EF=DH+DF=BE+DF;(3)如图,连接CD,延长AC、BD交于点M,根据题意得: AOB=20+90+40=150,OBD=60+50=110,COD=75,OAM=90-20=70,OA=OB,AOB=2COD,OAM+OBM=70+110=180,OA=OB,由(2)【迁移推广】得:CD=AC+BD,AC=800.5=40,BD=900.5=45,CD=40+45=85海里即此时两舰艇之间的距离85海里【点睛】此题是三角形综合题,主要考查了全等三角形的判

    31、定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用7(2022上海九年级专题练习)小明遇到这样一个问题:如图1,在RtABC中,BAC90,ABAC,点D,E在边BC上,DAE45若BD3,CE1,求DE的长小明发现,将ABD绕点A按逆时针方向旋转90,得到ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及DAE45,可证FAEDAE,得FEDE解FCE,可求得FE(即DE)的长(1)请回答:在图2中,FCE的度数是 ,DE的长为 参考小明思考问题的方法,解决问题:(2)如图3,

    32、在四边形ABCD中,ABAD,BD180E,F分别是边BC,CD上的点,且EAFBAD猜想线段BE,EF,FD之间的数量关系并说明理由【答案】(1)90,;(2),见解析【分析】(1)根据旋转的性质,可得,勾股定理解FCE,可求得FE(即DE)的长;(2)将ABE绕点A按逆时针方向旋转,使AB与AD重合,得到ADG,证明点F,D,G在同一条直线上,进而证明AEFAGF,EFFG,由FGDGFDBEDF,即可证明EFBEFD(1)解:将ABD绕点A按逆时针方向旋转90,得到ACF,在中,BD3,CE1,故答案为:90;(2)猜想:EF=BEFD;理由如下:如图,将ABE绕点A按逆时针方向旋转,使

    33、AB与AD重合,得到ADG,BEDG,AEAG,DAGBAE,BADG,BADC180,BADG,ADGADC180,即点F,D,G在同一条直线上EAFBAD,GAFDAGDAFBAEDAFBADEAFEAF,即GAFEAF在AEF和AGF中,AEFAGF,EFFGFGDGFDBEDF,EFBEFD【点睛】本题考查了旋转的性质,勾股定理,三角形全等的性质与判定,掌握性质的性质是解题的关键8(2022黑龙江哈尔滨市九年级阶段练习)已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD于M,N(1)如图1,当M,N分别在边BC,CD

    34、上时,求证:BM+DN=MN(2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系 (3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长【答案】(1)见解析;(2);(3)3【分析】(1)延长到使,连接AG,先证明,由此得到,再根据,可以得到,从而证明,然后根据全等三角形的性质即可证明;(2)在BM上取一点G,使得,连接AG,先证明,由此得到,由此可得,再根据可以得到,从而证明,然后根据全等三角形的性质即可证明;(3)在DN上取一点G,使得,连接AG,先证明,再证明,设,根据可求得,由此可得,最后再证明,由此即可求得答案【

    35、详解】(1)证明:如图,延长到使,连接AG,四边形ABCD是正方形,在与中, ,在与中, ,又,;(2),理由如下:如图,在BM上取一点G,使得,连接AG,四边形ABCD是正方形,在与中, ,又,在与中, ,又,故答案为:;(3)如图,在DN上取一点G,使得,连接AG,四边形ABCD是正方形,在与中, ,又,在与中, ,设,解得:,在与中, ,CP的长为3【点睛】本题考查了正方形的性质,全等三角形的判定与性质,能够作出正确的辅助线并能灵活运用全等三角形的判定与性质是解决本题的的关键9(2022浙江九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A

    36、旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AMEF于点M,请直接写出AM和AB的数量关系;(3)如图2,将RtABC沿斜边AC翻折得到RtADC,E,F分别是BC,CD边上的点,EAF=BAD,连接EF,过点A作AMEF于点M,试猜想AM与AB之间的数量关系并证明你的猜想【答案】(1)EF=BE+DF证明见解析;(2)AM=AB;(3)AM=AB证明见解析【分析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,D=DAB=ABE=A

    37、BQ=90,证ADFABQ,推出AQ=AF,QAB=DAF,求出EAQ=F,证EAQEAF,推出EF=BQ即可(2)根据EAQEAF,EF=BQ,得出BQAB=FEAM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,D=DAB=ABE=90,BAC=DAC=BAD,证得ADFABQ,推出AQ=AF,QAB=DAF,求出EAQ=FAE,从而证得EAQEAF,推出EF=BQ即可【详解】解:(1)EF=BE+DF证明如下:如答图1,延长CB到Q,使BQ=DF,连接AQ, 四边形ABCD是正方形,AD=AB,D=DAB=ABE=ABQ=90在ADF和ABQ中,AB

    38、=AD,ABQ=D,BQ=DF,ABQADF(SAS)AQ=AF,QAB=DAFDAB=90,FAE=45,DAF+BAE=45BAE+BAQ=45,即EAQ=EAF在EAQ和EAF中,AE=AE,EAQ=EAF,AQ=AF,EAQEAF(SAS)EF=BQ=BE+EQ=BE+DF(2)解:AM=AB,理由是:EAQEAF,EF=EQ,BQAB=FEAMAM=AB(3)AM=AB证明如下:如答图,延长CB到Q,使BQ=DF,连接AQ,折叠后B和D重合,AD=AB,D=DAB=ABE=90,BAC=DAC=BAD在ADF和ABQ中,AB=AD,ABQ=D,BQ=DF,ADFABQ(SAS)AQ=

    39、AF,QAB=DAFFAE=BAD,DAF+BAE=BAE+BAQ=EAQ=BAD,即EAQ=FAE在EAQ和EAF中,AE=AE,EAQ=EAF,AQ=AF,EAQEAF(SAS)EF=BQEAQEAF,EF=BQ,BQAB=FEAMAM=AB10(2022北京四中九年级期中)如图,在ABC中,ACB=90,CA=CB,点P在线段AB上,作射线CP(0ACP45),射线CP绕点C逆时针旋转45,得到射线CQ,过点A作ADCP于点D,交CQ于点E,连接BE(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明【答案】(1)作图见解析(2)结论:AD+BE=DE证明见解析【分析】(1)根据要求作出图形即可(2)结论:AD+BE=DE延长DA至F,使DF=DE,连接CF利用全等三角形的性质解决问题即可(1)解:如图所示:(2)结论:AD+BE=DE理由:延长DA至F,使DF=DE,连接CFADCP,DF=DE,CE=CF,DCF=DCE=45,ACB=90,ACD+ECB=45,DCA+ACF=DCF=45,FCA=ECB,在ACF和BCE中,ACFBCE(SAS),AF=BE,AD+BE=DE【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题02 全等模型-半角模型(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-827623.html
    相关资源 更多
  • 人教版六年级上册数学期末测试卷及参考答案(能力提升).docx人教版六年级上册数学期末测试卷及参考答案(能力提升).docx
  • 人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合题).docx人教版六年级上册数学期末测试卷及参考答案(综合题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合卷).docx人教版六年级上册数学期末测试卷及参考答案(综合卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(精练).docx人教版六年级上册数学期末测试卷及参考答案(精练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(突破训练).docx人教版六年级上册数学期末测试卷及参考答案(突破训练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(研优卷).docx人教版六年级上册数学期末测试卷及参考答案(研优卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(最新).docx人教版六年级上册数学期末测试卷及参考答案(最新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(新).docx人教版六年级上册数学期末测试卷及参考答案(新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(巩固).docx人教版六年级上册数学期末测试卷及参考答案(巩固).docx
  • 人教版六年级上册数学期末测试卷及参考答案(完整版).docx人教版六年级上册数学期末测试卷及参考答案(完整版).docx
  • 人教版六年级上册数学期末测试卷及参考答案(基础题).docx人教版六年级上册数学期末测试卷及参考答案(基础题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx
  • 人教版六年级上册数学期末测试卷及参考答案(典型题).docx人教版六年级上册数学期末测试卷及参考答案(典型题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(b卷).docx人教版六年级上册数学期末测试卷及参考答案(b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(a卷).docx人教版六年级上册数学期末测试卷及参考答案(a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案一套.docx人教版六年级上册数学期末测试卷及参考答案一套.docx
  • 人教版六年级上册数学期末测试卷及参考答案【预热题】.docx人教版六年级上册数学期末测试卷及参考答案【预热题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【达标题】.docx人教版六年级上册数学期末测试卷及参考答案【达标题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合题】.docx人教版六年级上册数学期末测试卷及参考答案【综合题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【精练】.docx人教版六年级上册数学期末测试卷及参考答案【精练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1