专题06 二次函数的实际应用(中考数学特色专题训练卷)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题06 二次函数的实际应用中考数学特色专题训练卷原卷版 专题 06 二次 函数 实际 应用 中考 数学 特色 训练 原卷版
- 资源描述:
-
1、专题06 二次函数的实际应用(中考数学特色专题训练卷)1(2021鄂州)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元张远村老张计划明年承租部分土地种植某种经济作物考虑各种因素,预计明年每亩土地种植该作物的成本y(元)与种植面积x(亩)之间满足一次函数关系,且当x160时,y840;当x190时,y960(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩
2、种植利润每亩销售额每亩种植成本+每亩种植补贴)2(2021武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒(1)求每盒产品的成本(成本原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的
3、常数,且是整数),直接写出每天的最大利润3(2021鞍山)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件)(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?4(2021达州)渠县是全
4、国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克(1)写出工厂每天的利润W元与降价x元之间的函数关系当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?5(2021德州)某公司分别在A,B两城生产同种产品,共100件A城生产产品的成本y(万元)与产品数量x(件)之间具有函数关系yx2+20x+100,B城生产产品
5、的每件成本为60万元(1)当A城生产多少件产品时,A,B两城生产这批产品成本的和最小,最小值是多少?(2)从A城把该产品运往C,D两地的费用分别为1万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件C地需要90件,D地需要10件,在(1)的条件下,怎样调运可使A,B两城运费的和最小?6(2021黄冈)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件其中月销售单价不低于成本设月销售单价为x(单位:元),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x
6、的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当月的月销售单价不高于70元,月销售最大利润是78万元,求a的值7(2021南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元(1)求苹果的进价;(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;(3)超市一天购进苹果数量不超过300千
7、克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=-1100x+12在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量(利润销售收入购进支出)8(2021阿坝州)某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价经过市场调查,每月的销售量y(件)与每件的售价x(元)之间满足如图所示的函数关系(1)求每月的销售量y(件)与每件的售价x(元)之间的函数关系式;(不必写出自变量的取值范围)(2)物价部门规定,该防护品每件的利润不允许高于进货价的30%设这种防护品每月的总利润为w(元),那么售价定为多少元可获得最
8、大利润?最大利润是多少?9(2021鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?10(2021锦州)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m50+0.2x,销售价y(万元/t)
9、与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)11(2021营口)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40x70,且x为整数)(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多
10、少?12(2021铁岭三模)元宵节前“便民超市”购进一批元宵,进价为每袋8元,售价为每袋12元,随着节日的临近,销售量稳步增加,第m天时销售量最大,之后每天少售出1袋,其销售量y(袋)与天数x(天)之间的关系图象如图1所示超市从第m天开始调整价格,第24天为元宵节,之后价格保持不变,其每袋售价p(元)与x(天)之间的关系如图2所示(1)直接写出y(袋)与x(天)之间的函数关系式,并注明自变量的取值范围;(2)设每天的销售利润为w(元),求前24天中第几天销售利润的最大,最大利润为多少元?13(2021湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份
11、为5.76万人(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:购票方式甲乙丙可游玩景点ABA和B门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?14(2021湖北)去年“抗疫
12、”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a20%(10x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6x9) 月份二月三月四月五月销售价:x(元/件)677.68.5该月销售量:y(万件)3020145(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入销售总金额成本+政府当月补贴)15(2021荆州模拟)某商店销售一
13、种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x/(元/件)506080周销售量y/件1008040周销售利润w/元100016001600注;周销售利润周销售量(售价进价)(1)求y关于x的函数解析式;当x是多少时,周销售利润最大?最大利润是多少?(2)由于某种原因,该商品的进价提高了m元/件(m0),物价部门规定该商品的售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数解析式若周销售的最大利润是1400元,求m值16(2021铜仁市)某品牌汽车销售店销售某种品牌的汽车,
14、每辆汽车的进价16(万元)当每辆售价为22(万元)时,每月可销售4辆汽车根据市场行情,现在决定进行降价销售通过市场调查得到了每辆降价的费用y1(万元)与月销售量x(辆)(x4)满足某种函数关系的五组对应数据如下表:x45678y100.511.52(1)请你根据所给材料和初中所学的函数知识写出y1与x的关系式y1 ;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y(每辆原售价y1进价)x,请你根据上述条件,求出月销售量x(x4)为多少时,销售利润最大?最大利润是多少?17(2021黄岛区模拟)某科技公司在国家专项资金的支持下,成功研发出一种电子产品第1年该产品正式投产后,生产成
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
