分享
分享赚钱 收藏 举报 版权申诉 / 17

类型专题06 二次函数的实际应用(中考数学特色专题训练卷)(原卷版).docx

  • 上传人:a****
  • 文档编号:829345
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:17
  • 大小:346KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题06 二次函数的实际应用中考数学特色专题训练卷原卷版 专题 06 二次 函数 实际 应用 中考 数学 特色 训练 原卷版
    资源描述:

    1、专题06 二次函数的实际应用(中考数学特色专题训练卷)1(2021鄂州)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元张远村老张计划明年承租部分土地种植某种经济作物考虑各种因素,预计明年每亩土地种植该作物的成本y(元)与种植面积x(亩)之间满足一次函数关系,且当x160时,y840;当x190时,y960(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩

    2、种植利润每亩销售额每亩种植成本+每亩种植补贴)2(2021武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒(1)求每盒产品的成本(成本原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的

    3、常数,且是整数),直接写出每天的最大利润3(2021鞍山)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件)(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?4(2021达州)渠县是全

    4、国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克(1)写出工厂每天的利润W元与降价x元之间的函数关系当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?5(2021德州)某公司分别在A,B两城生产同种产品,共100件A城生产产品的成本y(万元)与产品数量x(件)之间具有函数关系yx2+20x+100,B城生产产品

    5、的每件成本为60万元(1)当A城生产多少件产品时,A,B两城生产这批产品成本的和最小,最小值是多少?(2)从A城把该产品运往C,D两地的费用分别为1万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件C地需要90件,D地需要10件,在(1)的条件下,怎样调运可使A,B两城运费的和最小?6(2021黄冈)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件其中月销售单价不低于成本设月销售单价为x(单位:元),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x

    6、的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当月的月销售单价不高于70元,月销售最大利润是78万元,求a的值7(2021南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元(1)求苹果的进价;(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;(3)超市一天购进苹果数量不超过300千

    7、克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=-1100x+12在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量(利润销售收入购进支出)8(2021阿坝州)某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价经过市场调查,每月的销售量y(件)与每件的售价x(元)之间满足如图所示的函数关系(1)求每月的销售量y(件)与每件的售价x(元)之间的函数关系式;(不必写出自变量的取值范围)(2)物价部门规定,该防护品每件的利润不允许高于进货价的30%设这种防护品每月的总利润为w(元),那么售价定为多少元可获得最

    8、大利润?最大利润是多少?9(2021鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?10(2021锦州)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m50+0.2x,销售价y(万元/t)

    9、与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)11(2021营口)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40x70,且x为整数)(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多

    10、少?12(2021铁岭三模)元宵节前“便民超市”购进一批元宵,进价为每袋8元,售价为每袋12元,随着节日的临近,销售量稳步增加,第m天时销售量最大,之后每天少售出1袋,其销售量y(袋)与天数x(天)之间的关系图象如图1所示超市从第m天开始调整价格,第24天为元宵节,之后价格保持不变,其每袋售价p(元)与x(天)之间的关系如图2所示(1)直接写出y(袋)与x(天)之间的函数关系式,并注明自变量的取值范围;(2)设每天的销售利润为w(元),求前24天中第几天销售利润的最大,最大利润为多少元?13(2021湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份

    11、为5.76万人(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:购票方式甲乙丙可游玩景点ABA和B门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?14(2021湖北)去年“抗疫

    12、”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a20%(10x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6x9) 月份二月三月四月五月销售价:x(元/件)677.68.5该月销售量:y(万件)3020145(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入销售总金额成本+政府当月补贴)15(2021荆州模拟)某商店销售一

    13、种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x/(元/件)506080周销售量y/件1008040周销售利润w/元100016001600注;周销售利润周销售量(售价进价)(1)求y关于x的函数解析式;当x是多少时,周销售利润最大?最大利润是多少?(2)由于某种原因,该商品的进价提高了m元/件(m0),物价部门规定该商品的售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数解析式若周销售的最大利润是1400元,求m值16(2021铜仁市)某品牌汽车销售店销售某种品牌的汽车,

    14、每辆汽车的进价16(万元)当每辆售价为22(万元)时,每月可销售4辆汽车根据市场行情,现在决定进行降价销售通过市场调查得到了每辆降价的费用y1(万元)与月销售量x(辆)(x4)满足某种函数关系的五组对应数据如下表:x45678y100.511.52(1)请你根据所给材料和初中所学的函数知识写出y1与x的关系式y1 ;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y(每辆原售价y1进价)x,请你根据上述条件,求出月销售量x(x4)为多少时,销售利润最大?最大利润是多少?17(2021黄岛区模拟)某科技公司在国家专项资金的支持下,成功研发出一种电子产品第1年该产品正式投产后,生产成

    15、本为6元/件,第1年获得100万元的利润据统计,此产品年销售量y(万件)与售价x(元/件)之间满足如表关系:售价(元/件)15171820年销售量(万件)11986(1)求该产品年销售量y(万件)与售价x(元/件)之间满足的函数关系式(2)该产品第1年的售价是多少?(3)第2年,该公司投入20万元(20万元计入第2年的成本)对该产品进行升级研发,使产品的生产成本降为5元/件,为保持市场的占有率,公司规定第2年的产品售价不高于第1年的售价,另外受产能限制,该产品的年产量不能超过12万件,求该公司第2年的利润W(万元)与售价x(元/件)之间满足的函数关系式,并求至少为多少万元18(2021洪山区校

    16、级模拟)某公司投入研发费用120万元(120万元只计入第一年成本),成功研发出一种产品,产品正式投产后,生产成本为8元/件经试销发现年销售量y(万件)与售价x(元/件)有如表对应关系x(元/件)135y(万件)393735(1)直接写出y关于x的函数关系式: (2)若物价部门规定每件商品的利润率不得超过150%,当第一年的产品的售价x为多少时,年利润W最大,其最大值是多少?(3)为了提高利润,第二年该公司将第一年的最大利润再次投入研发(此费用计入第二年成本),使产品的生产成本降为5元/件,但规定第二年产品的售价涨幅不能超过第一年售价的20%,在年销售量y(万件)与售价x(元/件)的函数关系不变

    17、的情况下,若公司要求第二年的利润不低于166万元,求该公司第二年售价x(元/件)应满足的条件19(2021十堰)某商贸公司购进某种商品的成本为20元/kg,经过市场调研发现,这种商品在未来40天的销售单价y(元/kg)与时间x(天)之间的函数关系式为:y=0.25x+30(1x20且x为整数)35(20x40且x为整数),且日销量m(kg)与时间x(天)之间的变化规律符合一次函数关系,如下表:时间x(天)13610日销量m(kg)142138132124(1)填空:m与x的函数关系为 ;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售1kg商品就捐

    18、赠n元利润(n4)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围20(2021怀化)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少

    19、?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?21(2021盘锦)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元设生产并销售B型车床x台(1)当x4时,完成以下两个问题:请补全下面的表格:A型B

    20、型车床数量/台 x每台车床获利/万元10 若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0x14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润22(2021扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车另外,公司为每辆租出的汽车支付月维护费200元乙公司经理:我公司每辆汽车月租费3500元,无论是否

    21、租出汽车,公司均需一次性支付月维护费共计1850元说明:汽车数量为整数;月利润月租车费月维护费;两公司月利润差月利润较高公司的利润月利润较低公司的利润在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是 元;当每个公司租出的汽车为 辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围23(2021桐乡市一模)今年国内旅游

    22、市场逐步回暖,“周末自驾旅游”成为出游新趋势,但游客进入景区仍需要检测体温“百花园”景点每天9点钟开园,游客入园高峰时段是开园后半小时,为做好防疫工作,景点调查了某周六开园后半小时内进入景点的游客累计人数y(人)与经过的时间x分钟(x为自然数)之间的变化情况,部分数据如下:经过的时间:x/分钟0123451011121330累计人数:y(人)019036051063975010001020104010601400已知游客测量体温均需排队,体温检测点有2个,每个检测点每分钟检测20人(1)根据上述数据,请利用已学知识,求出y与x之间的函数关系式;(2)排队人数最多时有多少人?前1000位游客都完

    23、成体温检测需要多少时间?(3)若开园x分钟后增设m个体温检测点(受场地限制,检测点总数不能超过10个)以便在9点10分时正好完成前1000位游客的体温检测,求x,m的值24(2021广西)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=-112x2+76x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=-18x2+bx+c运动(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米

    24、,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围25(2021金华)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=-16(x5)2+6(1)求雕塑高OA(2)求落水点C,D之间的距离(3)若需要在OD上的点E处竖立雕塑EF,OE10m,EF1

    25、.8m,EFOD问:顶部F是否会碰到水柱?请通过计算说明26(2021青岛)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落

    26、地时,小钢球和无人机的高度差最大是多少米?27(2021随州)如今我国的大棚(如图1)种植技术已十分成熟小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=-16x2+bx+c,现测得A,B两墙体之间的水平距离为6米(1)直接写出b,c的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方

    27、米需要4根竹竿,则共需要准备多少根竹竿?28(2021衢州)如图1是一座抛物线型拱桥侧面示意图水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系(1)求桥拱顶部O离水面的距离(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m求出其中一条钢缆抛物线的函数表达式为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值29(2021即墨区一模)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE

    28、为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?30(2021贵阳)甲秀楼是贵阳市一张靓丽的名片

    29、如图,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA8m,桥拱顶点B到水面的距离是4m(1)按如图所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平)(3)如图,桥拱所在的函数图象是抛物线yax2+bx+c(a0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象将新函数图象向右平移m(m0)个单位长度,平移后的函数图象在8x9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题06 二次函数的实际应用(中考数学特色专题训练卷)(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-829345.html
    相关资源 更多
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(能力提升).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(能力提升).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(考点梳理).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(考点梳理).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(网校专用).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(网校专用).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(精选题).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(精选题).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(精练).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(精练).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(精品).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(精品).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(突破训练).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(突破训练).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(研优卷).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(研优卷).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(满分必刷).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(满分必刷).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(有一套).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(有一套).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(易错题).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(易错题).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(实用).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(实用).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(夺分金卷).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(夺分金卷).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(夺冠).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(夺冠).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(夺冠系列).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(夺冠系列).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(培优).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(培优).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(培优B卷).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(培优B卷).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(名师系列).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(名师系列).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(名师推荐).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(名师推荐).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(各地真题).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(各地真题).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(历年真题).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(历年真题).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(典型题).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(典型题).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷加答案(全优).docx人教版小学一年级下册数学期末综合检测测试试卷加答案(全优).docx
  • 人教版小学一年级下册数学期末综合检测测试试卷【重点班】.docx人教版小学一年级下册数学期末综合检测测试试卷【重点班】.docx
  • 人教版小学一年级下册数学期末综合检测测试试卷【中心小学】.docx人教版小学一年级下册数学期末综合检测测试试卷【中心小学】.docx
  • 人教版小学一年级下册数学期末测试卷(重点班).docx人教版小学一年级下册数学期末测试卷(重点班).docx
  • 人教版小学一年级下册数学期末测试卷(达标题).docx人教版小学一年级下册数学期末测试卷(达标题).docx
  • 人教版小学一年级下册数学期末测试卷(能力提升)word版.docx人教版小学一年级下册数学期末测试卷(能力提升)word版.docx
  • 人教版小学一年级下册数学期末测试卷(考试直接用).docx人教版小学一年级下册数学期末测试卷(考试直接用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1