分享
分享赚钱 收藏 举报 版权申诉 / 23

类型专题08 圆锥曲线中的向量问题-直击2021年高考中的圆锥曲线问题(理科数学).docx

  • 上传人:a****
  • 文档编号:830104
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:23
  • 大小:996.28KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题08 圆锥曲线中的向量问题-直击2021年高考中的圆锥曲线问题理科数学 专题 08 圆锥曲线 中的 向量 问题 直击 2021 年高 考中 理科 数学
    资源描述:

    1、专题08 圆锥曲线中的向量问题一、主要题型:1三点共线问题;2公共点个数问题;3弦长问题;4中点问题;5定比分点问题;6对称问题;7平行与垂直问题;8角的问题。二、近几年平面向量与解析几何交汇试题考查方向为(1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。(2)考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。特别提醒:D法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。技巧1 已知向量关系求值例1、已知、为抛物线上的不同两点,为抛物线的焦点,若,则直线的斜率为( )ABCD【答案】D【解析】【分析】【详解】设,由

    2、. 设,与抛物线联立得,. 式、联立解得.故答案为D例2、已知抛物线上的焦点为.(1)求抛物线的标准方程;(2)过作斜率为的直线交曲线于、两点,若,求直线的方程.【答案】(1);(2).【解析】【分析】(1)根据焦点坐标求得,结合抛物线的开口方向求得抛物线的标准方程.(2)联立直线的方程和抛物线方程,写出根与系数关系,结合求得的值,进而求得直线的方程.【详解】(1)依题意,抛物线的焦点为,开口向上,所以曲线的方程为:;(2)设过的斜率为的直线方程为:, 联立,消去并化简得. 令、,所以,由题可知:,即:,即得, 由,得:,所求直线的方程为:.【点睛】本小题主要考查抛物线方程的求法,考查直线和抛

    3、物线的位置关系,属于中档题.技巧2 有关向量的运算例3、已知双曲线的左、右焦点分别为,过点的动直线与双曲线相交于两点(I)若动点满足(其中为坐标原点),求点的轨迹方程;(II)在轴上是否存在定点,使为常数?若存在,求出点的坐标;若不存在,请说明理由解:由条件知,设,解法一:(I)设,则,由得即 于是的中点坐标为当不与轴垂直时,即又因为两点在双曲线上,所以,两式相减得,即将代入上式,化简得当与轴垂直时,求得,也满足上述方程所以点的轨迹方程是(II)假设在轴上存在定点,使为常数当不与轴垂直时,设直线的方程是代入有则是上述方程的两个实根,所以,于是因为是与无关的常数,所以,即,此时=当与轴垂直时,点

    4、的坐标可分别设为,此时故在轴上存在定点,使为常数解法二:(I)同解法一的(I)有当不与轴垂直时,设直线的方程是代入有则是上述方程的两个实根,所以 由得当时,由得,将其代入有整理得当时,点的坐标为,满足上述方程当与轴垂直时,求得,也满足上述方程故点的轨迹方程是(II)假设在轴上存在定点点,使为常数,当不与轴垂直时,由(I)有,以上同解法一的(II)1抛物线的焦点为,准线为,点在上,线段与抛物线交于点,若,点到轴的距离为2,则的值是( )AB4CD2【答案】C【解析】【分析】画出图形,通过向量关系,转化为:,通过求解三角形,结合抛物线的性质转化求解即可【详解】解:抛物线的焦点为,准线为,点在上,线

    5、段与抛物线交于点,若,过作于,则,所以,设准线与轴交于,则,因为点到轴的距离为2,所以,解得,故选:C【点睛】本题考查抛物线几何性质、平面向量的线性运算,熟练掌握抛物线的几何性质是解题的关键,考查学生的分析能力和运算能力,属于中档题2已知双曲线的标准方程为,过其右焦点F的直线与双曲线的右支交于A,B两点,若,则AB的垂直平分线与x轴交点的横坐标是( )A20B10C12D18【答案】A【解析】【分析】解法一:先根据双曲线的方程得到焦点F的坐标,设出直线AB的方程,并将其与双曲线方程联立,再结合及根与系数的关系,求出AB的中点坐标,进而可得AB的垂直平分线的方程,最后求其与x轴交点的横坐标即可;

    6、解法二:设出A,B两点的坐标,结合,利用向量的坐标表示求出两点坐标之间的关系进行求解.【详解】解法:由,得双曲线的右焦点,故由题意可设直线AB的方程为.联立方程,得,消去x得.设,.由及根与系数的关系,得,得,或,由对称性不妨设,则AB的中点坐标为,所以AB的垂直平分线的方程为,令,得.故选:A.解法二:由,得双曲线的右焦点.不妨设点A在第一象限内,设,因为,所以,得.又点A,B在双曲线上,所以,得,则,所以AB的中点坐标为,直线AB的斜率,所以AB的垂直平分线的方程为,令,得.故选:A.【点睛】本题主要考查双曲线的几何性质、直线与双曲线的位置关系、向的坐标表示. 试题综合考查直线与双曲线的位

    7、置关系,引导考生抓住解析几何问题的本质,透过本质建立数与形之间的联系,体现了直观想象、逻辑推理、数学运算等核心素养.3已知双曲线的右焦点为,过且斜率为的直线交于、两点,若,则的离心率为( )ABCD【答案】B【解析】【分析】设双曲线的右准线为,过、分别作于,于,于,根据直线的斜率为,得到,再利用双曲线的第二定义得到,又,结合求解.【详解】设双曲线的右准线为,过、分别作于,于,于,如图所示:因为直线的斜率为,所以直线的倾斜角为,由双曲线的第二定义得:,又,故选:B【点睛】本题主要考查双曲线的第二定义的应用以及离心率的求法,还考查了数形结合的思想和运算求解的能力,属于中档题.4已知点与抛物线,过抛

    8、物线焦点的直线与抛物线交于A,B两点,与y轴交于点,若,且直线QA的斜率为1,则( )A2B4CD【答案】C【解析】【分析】判断A、B的位置,结合向量关系,推出A、B横坐标与纵坐标的关系,通过直线的斜率关系,转化求解即可.【详解】解:由题意可知A在第一象限,B在第四象限,设,由,所以,得,又,所以,又A、F、B三点共线,可得,即,可得,由QA斜率为1可得:,即,则.故选:C.【点睛】在直线和抛物线的位置关系中,结合向量共线考查求抛物线中的参数;基础题.5.已知椭圆(1)求椭圆的标准方程和离心率;(2)是否存在过点的直线与椭圆相交于,两点,且满足若存在,求出直线的方程;若不存在,请说明理由【答案

    9、】(1),;(2)存在,7x+30或7x+30【解析】【分析】(1)将椭圆方程化为标准方程,可得a,b,c,由离心率公式可得所求值;(2)假设存在过点P(0,3)的直线l与椭圆C相交于A,B两点,且满足,可设直线l的方程为xm(y3),联立椭圆方程,消去x可得y的二次方程,运用韦达定理和判别式大于0,再由向量共线的坐标表示,化简整理解方程,即可判断是否存在这样的直线【详解】(1)由,得,进而,;(2)假设存在过点P(0,3)的直线l与椭圆C相交于A,B两点,且满足,可设直线l的方程为xm(y3),联立椭圆方程x2+2y24,可得(2+m2)y26m2y+9m240,36m44(2+m2)(9m

    10、24)0,即m2,设A(x1,y1),B(x2,y2),可得y1+y2,y1y2,由,可得(x2,y23)2(x1,y13),即y232(y13),即y22y13,将代入可得3y13,y1(2y13),消去y1,可得,解得m2,所以,故存在这样的直线l,且方程为7xy+30或7x+y30【点睛】本题考查椭圆的方程和性质,考查直线方程和椭圆方程联立,运用韦达定理,同时考查向量共线的坐标表示,考查化简运算能力和推理能力,属于中档题1(2018年北京卷)设抛物线C:y2=4x的焦点为F,过点(2,0)且斜率为的直线与C交于M,N两点,则=( )A5B6C7D8【答案】D【解析】【分析】首先根据题中的

    11、条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.【详解】根据题意,过点(2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.【点睛】该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求

    12、点M、N的坐标,应用韦达定理得到结果.2(2017年北京卷)已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点若,则C的离心率为_【答案】2.【解析】【分析】通过向量关系得到和,得到,结合双曲线的渐近线可得从而由可求离心率.【详解】如图,由得又得OA是三角形的中位线,即由,得则有,又OA与OB都是渐近线,得又,得又渐近线OB的斜率为,所以该双曲线的离心率为【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养采取几何法,利用数形结合思想解题3(2020年江苏卷)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,

    13、F2,点A在椭圆E上且在第一象限内,AF2F1F2,直线AF1与椭圆E相交于另一点B(1)求AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;(3)设点M在椭圆E上,记OAB与MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标【答案】(1)6;(2)-4;(3)或.【解析】【分析】(1)根据椭圆定义可得,从而可求出的周长;(2)设,根据点在椭圆上,且在第一象限,求出,根据准线方程得点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设,点到直线的距离为,由点到直线的距离与,可推出,根据点到直线的距离公式,以及满足椭圆方程,解方程

    14、组即可求得坐标.【详解】(1)椭圆的方程为,由椭圆定义可得:.的周长为(2)设,根据题意可得.点在椭圆上,且在第一象限,准线方程为,当且仅当时取等号.的最小值为.(3)设,点到直线的距离为.,直线的方程为点到直线的距离为,联立解得,.或.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据推出是解答本题的关键.4(2019年新课标全国I卷)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|【答案】(1);(2).【分析】(1)设直线:,;根据抛物线焦半径

    15、公式可得;联立直线方程与抛物线方程,利用韦达定理可构造关于的方程,解方程求得结果;(2)设直线:;联立直线方程与抛物线方程,得到韦达定理的形式;利用可得,结合韦达定理可求得;根据弦长公式可求得结果.【详解】(1)设直线方程为:,由抛物线焦半径公式可知: 联立得:则 ,解得:直线的方程为:,即:(2)设,则可设直线方程为:联立得:则 , , 则【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.5(2018年北京卷)已知抛物线C:=2px经过点(1,2)过点Q(0,1)的直线l与抛物线C有两

    16、个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N()求直线l的斜率的取值范围;()设O为原点,求证:为定值【答案】(1) 取值范围是(-,-3)(-3,0)(0,1)(2)证明过程见解析【解析】【分析】【详解】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据PA,PB与y轴相交,舍去k=3,(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得,再由,得,利用直线PA,PB的方程分别得点M,N的纵坐标,代入化简可得结论.详解:解:()因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛

    17、物线的方程为y2=4x由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k0)由得依题意,解得k0或0k1又PA,PB与y轴相交,故直线l不过点(1,-2)从而k-3所以直线l斜率的取值范围是(-,-3)(-3,0)(0,1)()设A(x1,y1),B(x2,y2)由(I)知,直线PA的方程为令x=0,得点M的纵坐标为同理得点N的纵坐标为由,得,所以所以为定值点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求

    18、解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.6(2018年新课标全国II卷)已知斜率为的直线与椭圆交于,两点,线段的中点为(1)证明:;(2)设为的右焦点,为上一点,且证明:,成等差数列,并求该数列的公差【答案】(1)(2)或【解析】分析:(1)设而不求,利用点差法进行证明(2)解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,得到直的方程,联立直线与椭圆方程由韦达定理进行求解详解:(1)设,则.两式相减,并由得.由题设知,于是.由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.将代入得.所以l的方程为,代入C的方程,并整理得.故,代入解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大今天错在哪里啦?_

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题08 圆锥曲线中的向量问题-直击2021年高考中的圆锥曲线问题(理科数学).docx
    链接地址:https://www.ketangku.com/wenku/file-830104.html
    相关资源 更多
  • 人教版六年级上册数学期末测试卷及参考答案(能力提升).docx人教版六年级上册数学期末测试卷及参考答案(能力提升).docx
  • 人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合题).docx人教版六年级上册数学期末测试卷及参考答案(综合题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合卷).docx人教版六年级上册数学期末测试卷及参考答案(综合卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(精练).docx人教版六年级上册数学期末测试卷及参考答案(精练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(突破训练).docx人教版六年级上册数学期末测试卷及参考答案(突破训练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(研优卷).docx人教版六年级上册数学期末测试卷及参考答案(研优卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(最新).docx人教版六年级上册数学期末测试卷及参考答案(最新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(新).docx人教版六年级上册数学期末测试卷及参考答案(新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(巩固).docx人教版六年级上册数学期末测试卷及参考答案(巩固).docx
  • 人教版六年级上册数学期末测试卷及参考答案(完整版).docx人教版六年级上册数学期末测试卷及参考答案(完整版).docx
  • 人教版六年级上册数学期末测试卷及参考答案(基础题).docx人教版六年级上册数学期末测试卷及参考答案(基础题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx
  • 人教版六年级上册数学期末测试卷及参考答案(典型题).docx人教版六年级上册数学期末测试卷及参考答案(典型题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(b卷).docx人教版六年级上册数学期末测试卷及参考答案(b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(a卷).docx人教版六年级上册数学期末测试卷及参考答案(a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案一套.docx人教版六年级上册数学期末测试卷及参考答案一套.docx
  • 人教版六年级上册数学期末测试卷及参考答案【预热题】.docx人教版六年级上册数学期末测试卷及参考答案【预热题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【达标题】.docx人教版六年级上册数学期末测试卷及参考答案【达标题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合题】.docx人教版六年级上册数学期末测试卷及参考答案【综合题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【精练】.docx人教版六年级上册数学期末测试卷及参考答案【精练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1