分享
分享赚钱 收藏 举报 版权申诉 / 14

类型专题08 平面解析几何(解答题)(原卷版).docx

  • 上传人:a****
  • 文档编号:830135
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:14
  • 大小:559.69KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题08 平面解析几何解答题原卷版 专题 08 平面 解析几何 解答 原卷版
    资源描述:

    1、五年(2019-2023)年高考真题分项汇编专题08 平面解析几何(解答题)平面解析几何在高考中考查比例较大,一般是1+1+1模式或者是2+1+1模式。在选题中,解析几何解答题中难度一般较大,计算量比较大.主要知识点是考点01 椭圆及其性质考点02 双曲线及其性质考点03 抛物线及其性质考点04 解析几何定点定值问题考点05 解析几何综合性问题考点01 椭圆及其性质1.(2020年新高考全国卷数学(海南)第21题)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,(1)求C的方程;(2)点N为椭圆上任意一点,求AMN的面积的最大值2.(2020江苏高考第18题)在平面直角坐标系中

    2、,已知椭圆的左、右焦点分别为,点在椭圆上且在第一象限内,直线与椭圆相交于另一点(1)求的周长;(2)在轴上任取一点,直线与椭圆的右准线相交于点,求的最小值;(3)设点在椭圆上,记与的面积分别为,若,求点的坐标3.(2020年高考课标卷理科第20题)已知椭圆的离心率为,分别为的左、右顶点(1)求的方程;(2)若点在上,点在直线上,且,求的面积5(2023年北京卷第19题)已知椭圆离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,(1)求的方程;(2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点求证:6.(2023年天津卷第18题)设椭圆的左右顶点分别为,右焦点为,已

    3、知(1)求椭圆方程及其离心率;(2)已知点是椭圆上一动点(不与端点重合),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程7.(2022高考北京卷第19题)已知椭圆:的一个顶点为,焦距为(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值8.(2022年浙江省高考数学试题第21题)如图,已知椭圆设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点(1)求点P到椭圆上点的距离的最大值;(2)求的最小值9 .(2021高考北京第20题)已知椭圆一个顶 点,以椭圆的四个顶点为顶点的四边形面积为(

    4、1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|15时,求k的取值范围10.(2020天津高考第18题)已知椭圆的一个顶点为,右焦点为,且,其中为原点()求椭圆方程;()已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点求直线的方程11.(2019上海第20题)已知椭圆,为左、右焦点,直线过交椭圆于A、B两点.(1)若AB垂直于轴时,求;(2)当时,在轴上方时,求的坐标;(3)若直线交轴于M,直线交轴于N,是否存在直线,使,若存在,求出直线的方程

    5、;若不存在,请说明理由.考点02 双曲线及其性质1(2023年新课标全国卷第21题)已知双曲线C的中心为坐标原点,左焦点为,离心率为(1)求C的方程;(2)记C左、右顶点分别为,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P证明:点在定直线上 2.(2022新高考全国II卷第21题)已知双曲线的右焦点为,渐近线方程为(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且过P且斜率为的直线与过Q且斜率为的直线交于点M从下面中选取两个作为条件,证明另外一个成立:M在上;注:若选择不同的组合分别解答,则按第一个解答计分3(2021年新高考卷第21题)在平

    6、面直角坐标系中,已知点、,点的轨迹为(1)求的方程;(2)设点在直线上,过两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和4.(2022新高考全国I卷第21题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0(1)求l斜率;(2)若,求的面积考点03 抛物线及其性质1.(2023年全国甲卷理科第20题)已知直线与抛物线交于两点,且(1)求;(2)设F为C的焦点,M,N为C上两点,求面积的最小值2.(2021年高考浙江卷第21题)如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,(1)求抛物线的方程;(2)设过点F的直线交抛物线与AB两点,斜率为2的直线l

    7、与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围3.(2021年高考全国乙卷理科第21题)已知抛物线的焦点为,且与圆上点的距离的最小值为(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值4.(2021年高考全国甲卷理科第20题)抛物线C的顶点为坐标原点O焦点在x轴上,直线l:交C于P,Q两点,且已知点,且与l相切(1)求C,的方程;(2)设是C上的三个点,直线,均与相切判断直线与的位置关系,并说明理由5.(2020年浙江省高考数学试卷第21题)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A)()若,求抛

    8、物线的焦点坐标;()若存在不过原点的直线l使M为线段AB的中点,求p的最大值6.(2022年高考全国甲卷数学(理)第20题)设抛物线焦点为F,点,过F的直线交C于M,N两点当直线MD垂直于x轴时,(1)求C的方程;(2)设直线与C另一个交点分别为A,B,记直线的倾斜角分别为当取得最大值时,求直线AB的方程7.(2019浙江第21题)如图,已知点为抛物线的焦点过点的直线交抛物线于,两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点的右侧,记,的面积分别为,()求的值及抛物线的准线方程;()求的最小值及此时点的坐标 8.(2019全国理第21题)已知曲线C:y=,D为直线y=上的动点,过D

    9、作C的两条切线,切点分别为A,B(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积9.(2019全国理第19题)已知抛物线的焦点为,斜率为的直线与的交点为,与轴的交点为(1)若,求的方程;(2)若,求10.(2019北京理第18题)已知抛物线C:x2=2py经过点(2,1)()求抛物线C的方程及其准线方程;()设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=1分别交直线OM,ON于点A和点B求证:以AB为直径的圆经过y轴上的两个定点考点04 圆锥曲线的定点定值问题1.(2021年新高考全国卷第

    10、20题)已知椭圆C的方程为,右焦点为,且离心率为(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切证明:M,N,F三点共线的充要条件是2.(2020年高考课标卷理科第20题)已知A、B分别为椭圆E:(a1)左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E方程;(2)证明:直线CD过定点3.(2020年新高考全国卷(山东)第22题)已知椭圆C:的离心率为,且过点A(2,1)(1)求C的方程:(2)点M,N在C上,且AMAN,ADMN,D为垂足证明:存在定点Q,使得|DQ|为定值4.(2022年高考全国乙卷数学(理)第2

    11、0题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点(1)求E的方程;(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足证明:直线HN过定点考点05 解析几何综合类问题1.(2023年新课标全国卷第22题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为(1)求的方程;(2)已知矩形有三个顶点在上,证明:矩形的周长大于2 .(2023年全国乙卷理科第20题)已知椭圆的离心率是,点在上(1)求方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点3 .(2020年高考课标卷理科第19题)已知椭圆C1:(ab0)右焦点

    12、F与抛物线C2的焦点重合,C1的中心与C2的顶点重合过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程4.(2019天津理第18题)设椭圆的左焦点为,上顶点为已知椭圆的短轴长为4,离心率为()求椭圆的方程;()设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上若(为原点),且,求直线的斜率5.(2019全国理第21题)已知点,动点满足直线与的斜率之积为记的轨迹为曲线求的方程,并说明是什么曲线;过坐标原点的直线交于两点,点在第一象限,轴,垂足为,连结并延长交于点证明:是直角三角形;求面积的最大值6.(2019江苏第17题)如图,在平面直角坐标系中,椭圆:的焦点为,过作轴的垂线,在轴的上方,与圆:交于点,与椭圆交于点.连结并延长交圆于点,连结交椭圆于点,连结已知(1)求椭圆的标准方程;(2)求点的坐标

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题08 平面解析几何(解答题)(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-830135.html
    相关资源 更多
  • 人教版小学二年级下册数学期末测试卷a4版.docx人教版小学二年级下册数学期末测试卷a4版.docx
  • 人教版小学二年级下册数学期中测试卷(黄金题型)word版.docx人教版小学二年级下册数学期中测试卷(黄金题型)word版.docx
  • 人教版小学二年级下册数学期中测试卷(黄金题型).docx人教版小学二年级下册数学期中测试卷(黄金题型).docx
  • 人教版小学二年级下册数学期中测试卷(预热题).docx人教版小学二年级下册数学期中测试卷(预热题).docx
  • 人教版小学二年级下册数学期中测试卷(重点班).docx人教版小学二年级下册数学期中测试卷(重点班).docx
  • 人教版小学二年级下册数学期中测试卷(达标题).docx人教版小学二年级下册数学期中测试卷(达标题).docx
  • 人教版小学二年级下册数学期中测试卷(轻巧夺冠).docx人教版小学二年级下册数学期中测试卷(轻巧夺冠).docx
  • 人教版小学二年级下册数学期中测试卷(能力提升).docx人教版小学二年级下册数学期中测试卷(能力提升).docx
  • 人教版小学二年级下册数学期中测试卷(考试直接用).docx人教版小学二年级下册数学期中测试卷(考试直接用).docx
  • 人教版小学二年级下册数学期中测试卷(考点精练).docx人教版小学二年级下册数学期中测试卷(考点精练).docx
  • 人教版小学二年级下册数学期中测试卷(考点梳理).docx人教版小学二年级下册数学期中测试卷(考点梳理).docx
  • 人教版小学二年级下册数学期中测试卷(考点提分).docx人教版小学二年级下册数学期中测试卷(考点提分).docx
  • 人教版小学二年级下册数学期中测试卷(网校专用).docx人教版小学二年级下册数学期中测试卷(网校专用).docx
  • 人教版小学二年级下册数学期中测试卷(综合题).docx人教版小学二年级下册数学期中测试卷(综合题).docx
  • 人教版小学二年级下册数学期中测试卷(综合卷).docx人教版小学二年级下册数学期中测试卷(综合卷).docx
  • 人教版小学二年级下册数学期中测试卷(精选题).docx人教版小学二年级下册数学期中测试卷(精选题).docx
  • 人教版小学二年级下册数学期中测试卷(精练).docx人教版小学二年级下册数学期中测试卷(精练).docx
  • 人教版小学二年级下册数学期中测试卷(精品).docx人教版小学二年级下册数学期中测试卷(精品).docx
  • 人教版小学二年级下册数学期中测试卷(精华版).docx人教版小学二年级下册数学期中测试卷(精华版).docx
  • 人教版小学二年级下册数学期中测试卷(突破训练).docx人教版小学二年级下册数学期中测试卷(突破训练).docx
  • 人教版小学二年级下册数学期中测试卷(研优卷).docx人教版小学二年级下册数学期中测试卷(研优卷).docx
  • 人教版小学二年级下册数学期中测试卷(真题汇编).docx人教版小学二年级下册数学期中测试卷(真题汇编).docx
  • 人教版小学二年级下册数学期中测试卷(满分必刷).docx人教版小学二年级下册数学期中测试卷(满分必刷).docx
  • 人教版小学二年级下册数学期中测试卷(模拟题).docx人教版小学二年级下册数学期中测试卷(模拟题).docx
  • 人教版小学二年级下册数学期中测试卷(有一套)word版.docx人教版小学二年级下册数学期中测试卷(有一套)word版.docx
  • 人教版小学二年级下册数学期中测试卷(有一套).docx人教版小学二年级下册数学期中测试卷(有一套).docx
  • 人教版小学二年级下册数学期中测试卷(易错题)word版.docx人教版小学二年级下册数学期中测试卷(易错题)word版.docx
  • 人教版小学二年级下册数学期中测试卷(易错题).docx人教版小学二年级下册数学期中测试卷(易错题).docx
  • 人教版小学二年级下册数学期中测试卷(必刷).docx人教版小学二年级下册数学期中测试卷(必刷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1