专题13 最值模型:瓜豆原理-主从动点问题(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重难点解读专项训练
- 资源描述:
-
1、专题13 最值模型;瓜豆原理-主从动点问题(知识解读)【专题说明】 初中数学有一类动态问题叫做主从联动,有的老师叫他瓜豆原理,也有的老师叫他旋转相似这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题【方法技巧】瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同(古人云:种瓜得瓜,种豆得豆“种”圆得圆,“种”线得线,谓之“瓜豆原理”)满足条件:1.两动一定;2.动点与定点的连线夹角是定角;3.动点到定点的距离比值是定值方法:第一步:找主动点的轨迹 ;第二步:找从动点与主动
2、点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值“瓜豆原理”其实质就是构造旋转、相似涉及的知识和方法:知识:相似;三角形的两边之和大于第三边;点到直线之间的距离垂线段最短;点到圆上点共线有最值模型一:运动轨迹为圆弧引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有AMQAOP,QM:PO=AQ:A
3、P=1:2【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AOQ点轨迹相当于是P点轨迹成比例缩放根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQAP且AQ=AP考虑:当点P在圆O上运动时,Q点轨迹是? 【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90得AQ,故Q点轨迹与P点轨迹都是圆接下来确定圆心与半径考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半
4、径MQ=PO即可确定圆M位置,任意时刻均有APOAQM引例3:如图,APQ是直角三角形,PAQ=90且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1即可确定圆M位置,任意时刻均有APOAQM,且相似比为2【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值)【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-831934.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
内蒙古包头市2022届高三第一次模拟考试文科数学试题(A卷) PDF版含答案.pdf
