专题14 基本不等式解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题14 基本不等式解析 专题 14 基本 不等式 解析
- 资源描述:
-
1、专题14 基本不等式第一部分 真题分类1(2021江苏高考真题)已知奇函数是定义在上的单调函数,若正实数,满足则的最小值是( )ABC2D4【答案】B【解析】解:因为,所以,因为奇函数是定义在上的单调函数,所以,所以,即,所以,即,所以,当且仅当,即时取等号,所以的最小值是.故选:B2(2021全国高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为( )A13B12C9D6【答案】C【解析】由题,则,所以(当且仅当时,等号成立)故选:C3(2021浙江高考真题)已知是互不相同的锐角,则在三个值中,大于的个数的最大值是( )A0B1C2D3【答案】C【解析】法1:由基本不等式有,同理,故,
2、故不可能均大于.取,则,故三式中大于的个数的最大值为2,故选:C.法2:不妨设,则,由排列不等式可得:,而,故不可能均大于.取,则,故三式中大于的个数的最大值为2,故选:C.4(2021全国高考真题(文)下列函数中最小值为4的是( )ABCD【答案】C【解析】对于A,当且仅当时取等号,所以其最小值为,A不符合题意;对于B,因为,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;对于C,因为函数定义域为,而,当且仅当,即时取等号,所以其最小值为,C符合题意;对于D,函数定义域为,而且,如当,D不符合题意故选:C5(2019北京高考真题(理)数学中有许多形状优美、寓意美好的曲线,曲线C
3、:就是其中之一(如图).给出下列三个结论:曲线C恰好经过6个整点(即横、纵坐标均为整数的点);曲线C上任意一点到原点的距离都不超过;曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是ABCD【答案】C【解析】由得,所以可为的整数有0,-1,1,从而曲线恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论正确.由得,解得,所以曲线上任意一点到原点的距离都不超过. 结论正确.如图所示,易知,四边形的面积,很明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法错误.故选C.6(2020海南高考真题)已知a0,b0,且a+b=1,
4、则( )ABCD【答案】ABD【解析】对于A,当且仅当时,等号成立,故A正确;对于B,所以,故B正确;对于C,当且仅当时,等号成立,故C不正确;对于D,因为,所以,当且仅当时,等号成立,故D正确;故选:ABD7(2021天津高考真题)若,则的最小值为_【答案】【解析】,当且仅当且,即时等号成立,所以的最小值为.故答案为:.8(2020天津高考真题)已知,且,则的最小值为_【答案】4【解析】,,,当且仅当=4时取等号,结合,解得,或时,等号成立.故答案为:9(2020江苏高考真题)已知,则的最小值是_【答案】【解析】且,当且仅当,即时取等号.的最小值为.故答案为:.10(2019天津高考真题(文
5、) 设,则的最小值为_.【答案】.【解析】由,得,得,等号当且仅当,即时成立故所求的最小值为11(2021江苏高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本万元与年产量吨之间的函数关系可以近似地表示为,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.【答案】(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元.【解析】(1),当且仅当时,即取“=”,
6、符合题意;年产量为100吨时,平均成本最低为16万元.(2)又,当时,.答:年产量为110吨时,最大利润为860万元.12(2020全国高考真题(文)设a,b,cR,a+b+c=0,abc=1(1)证明:ab+bc+ca0;(2)用maxa,b,c表示a,b,c中的最大值,证明:maxa,b,c【答案】(1)证明见解析(2)证明见解析.【解析】(1),.均不为,则,;(2)不妨设,由可知,.当且仅当时,取等号,即.第二部分 模拟训练一、单选题1已知定义在上的函数是奇函数,当时,则不等式的解集为( )ABCD【答案】D【解析】因为函数是定义在上的奇函数,所以函数的图像关于点中心对称,且,当时,则
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
三年级语文下册第六单元20肥皂泡预习课件新人教版20200221260.ppt
