专题17 圆-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题17 圆-5年20182022中考1年模拟数学分项汇编北京专用解析版 专题 17 2018 2022 中考 模拟 数学 汇编 北京 专用 解析
- 资源描述:
-
1、专题17 圆一、单选题1(2019北京中考真题)已知锐角AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN根据以上作图过程及所作图形,下列结论中错误的是()ACOM=CODB若OM=MN,则AOB=20CMNCDDMN=3CD【答案】D【解析】解:由作图知CM=CD=DN,COM=COD,故A选项正确;OM=ON=MN,OMN是等边三角形,MON=60,CM=CD=DN,MOA=AOB=BON=MON=20,故B选项正确;MOA=AOB=BON,OCD=OCM= ,M
2、CD=,又CMN=AON=COD,MCD+CMN=180,MNCD,故C选项正确;MC+CD+DNMN,且CM=CD=DN,3CDMN,故D选项错误;故选D二、填空题2(2021北京中考真题)如图,是的切线,是切点若,则_【答案】130【解析】解:是的切线,由四边形内角和可得:,;故答案为1303(2018北京中考真题)如图,点,在上,则_【答案】70【解析】=,故答案为三、解答题4(2022北京中考真题)在平面直角坐标系中,已知点对于点给出如下定义:将点向右或向左平移个单位长度,再向上或向下平移个单位长度,得到点,点关于点的对称点为,称点为点的“对应点”(1)如图,点点在线段的延长线上,若点
3、点为点的“对应点”在图中画出点;连接交线段于点求证:(2)的半径为1,是上一点,点在线段上,且,若为外一点,点为点的“对应点”,连接当点在上运动时直接写出长的最大值与最小值的差(用含的式子表示)【答案】(1)见解析(2)【解析】(1)解:点Q如下图所示点,点向右平移1个单位长度,再向上平移1个单位长度,得到点,点关于点的对称点为,点的横坐标为:,纵坐标为:,点,在坐标系内找出该点即可;证明:如图延长ON至点,连接AQ, ,在与中, ,;(2)解:如图所示,连接PO并延长至S,使,延长SQ至T,使,点向右或向左平移个单位长度,再向上或向下平移个单位长度,得到点,点关于点的对称点为,又,OMST,
4、NM为的中位线, ,在中,结合题意,即长的最大值与最小值的差为5(2022北京中考真题)如图,是的直径,是的一条弦,连接(1)求证:(2)连接,过点作交的延长线于点,延长交于点,若为的中点,求证:直线为的切线【答案】(1)答案见解析(2)答案见解析【解析】(1)证明:设交于点,连接,由题可知, ,;(2)证明: 连接,同理可得:,,点H是CD的中点,点F是AC的中点,为的直径,直线为的切线6(2021北京中考真题)如图,是的外接圆,是的直径,于点(1)求证:;(2)连接并延长,交于点,交于点,连接若的半径为5,求和的长【答案】(1)见详解;(2),【解析】(1)证明:是的直径,;(2)解:由题
5、意可得如图所示:由(1)可得点E为BC的中点,点O是BG的中点,的半径为5,7(2021北京中考真题)在平面直角坐标系中,的半径为1,对于点和线段,给出如下定义:若将线段绕点旋转可以得到的弦(分别是的对应点),则称线段是的以点为中心的“关联线段”(1)如图,点的横纵坐标都是整数在线段中,的以点为中心的“关联线段”是_;(2)是边长为1的等边三角形,点,其中若是的以点为中心的“关联线段”,求的值;(3)在中,若是的以点为中心的“关联线段”,直接写出的最小值和最大值,以及相应的长【答案】(1);(2);(3)当时,此时;当时,此时【解析】解:(1)由题意得:通过观察图象可得:线段能绕点A旋转90得
6、到的“关联线段”,都不能绕点A进行旋转得到;故答案为;(2)由题意可得:当是的以点为中心的“关联线段”时,则有是等边三角形,且边长也为1,当点A在y轴的正半轴上时,如图所示:设与y轴的交点为D,连接,易得轴,;当点A在y轴的正半轴上时,如图所示:同理可得此时的,;(3)由是的以点为中心的“关联线段”,则可知都在上,且,则有当以为圆心,1为半径作圆,然后以点A为圆心,2为半径作圆,即可得到点A的运动轨迹,如图所示:由运动轨迹可得当点A也在上时为最小,最小值为1,此时为的直径,;由以上情况可知当点三点共线时,OA的值为最大,最大值为2,如图所示:连接,过点作于点P,设,则有,由勾股定理可得:,即,
7、解得:,在中,;综上所述:当时,此时;当时,此时8(2020北京中考真题)如图,AB为O的直径,C为BA延长线上一点,CD是O的切线,D为切点,OFAD于点E,交CD于点F(1)求证:ADC=AOF;(2)若sinC=,BD=8,求EF的长【答案】(1)见解析;(2)2【解析】(1)证明:连接OD,CD是O的切线,ODCD,ADC+ODA=90,OFAD,AOF+DAO=90,OD=OA,ODA=DAO,ADC=AOF;(2)设半径为r,在RtOCD中,OA=r,AC=OC-OA=2r,AB为O的直径,ADB=90,又OFAD,OFBD,OE=4,9(2020北京中考真题)在平面直角坐标系中,
8、O的半径为1,A,B为O外两点,AB=1给出如下定义:平移线段AB,得到O的弦(分别为点A,B的对应点),线段长度的最小值称为线段AB到O的“平移距离”(1)如图,平移线段AB到O的长度为1的弦和,则这两条弦的位置关系是 ;在点中,连接点A与点 的线段的长度等于线段AB到O的“平移距离”;(2)若点A,B都在直线上,记线段AB到O的“平移距离”为,求的最小值;(3)若点A的坐标为,记线段AB到O的“平移距离”为,直接写出的取值范围【答案】(1)平行,P3;(2);(3)【解析】解:(1)平行;P3;(2)如图,线段AB在直线上,平移之后与圆相交,得到的弦为CD,CDAB,过点O作OEAB于点E
9、,交弦CD于点F,OFCD,令,直线与x轴交点为(-2,0),直线与x轴夹角为60,由垂径定理得:,;(3)线段AB的位置变换,可以看作是以点A为圆心,半径为1的圆,只需在O内找到与之平行,且长度为1的弦即可;点A到O的距离为如图,平移距离的最小值即点A到O的最小值:;平移距离的最大值线段是下图AB的情况,即当A1,A2关于OA对称,且A1B2A1A2且A1B2=1时.B2A2A1=60,则OA2A1=30,OA2=1,OM=, A2M=,MA=3,AA2= ,的取值范围为:10(2020北京中考真题)已知:如图,ABC为锐角三角形,AB=AC,CDAB求作:线段BP,使得点P在直线CD上,且
10、ABP=作法:以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;连接BP线段BP就是所求作线段(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明证明:CDAB,ABP= AB=AC,点B在A上又BPC=BAC( )(填推理依据)ABP=BAC【答案】(1)见解析;(2)BPC,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半【解析】解:(1)依据作图提示作图如下: (2)证明:CDAB,ABP= AB=AC,点B在A上又BPC=BAC(在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半 )(填推理依据)ABP=BAC故答案为:BPC;在同圆或等圆中同弧所对的圆
11、周角等于它所对圆心角的一半11(2019北京中考真题)在ABC中,分别是两边的中点,如果上的所有点都在ABC的内部或边上,则称为ABC的中内弧例如,下图中是ABC的一条中内弧(1)如图,在RtABC中,分别是的中点画出ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点,在ABC中,分别是的中点 若,求ABC的中内弧所在圆的圆心的纵坐标的取值范围; 若在ABC中存在一条中内弧,使得所在圆的圆心P在ABC的内部或边上,直接写出t的取值范围【答案】(1);(2)P的纵坐标或;.【解析】解:(1)如图2,以DE为直径的半圆弧,就是ABC的最长的中内弧,连接DE,A=90,AB=
12、AC=2,D,E分别是AB,AC的中点,弧;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EGAC交FP于G,当时,C(2,0),D(0,1),E(1,1),设由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,m1,OA=OC,AOC=90ACO=45,DEOCAED=ACO=45作EGAC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;综上所述,或m1图4,设圆心P在AC上,P在DE中垂线上,P为AE中点,作PMOC于M,则PM=,DEBCADE=AOB=90,PD=PE,AE
13、D=PDEAED+DAE=PDE+ADP=90,DAE=ADP由三角形中内弧定义知,PDPM,AE3,即,解得:12(2019北京中考真题)在平面内,给定不在同一直线上的点A,B,C,如图所示点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD(1)求证:AD=CD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM若AD=CM,求直线DE与图形G的公共点个数【答案】依题意画出图形G为O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.【解析】如图所示,依题
14、意画出图形G为O,如图所示(1)证明:BD平分ABC,ABD=CBD,AD=CD(2)解:AD=CD,AD=CM,CD=CM.DFBC,DFC=CFM=90在RtCDF和RtCMF中,RtCDFRtCMF(HL),DF=MF,BC为弦DM的垂直平分线BC为O的直径,连接ODCOD=2CBD,ABC=2CBD,ABC=COD,ODBE.又DEBA,DEB=90,ODE=90,即ODDE,DE为O的切线.直线DE与图形G的公共点个数为1个.13(2018北京中考真题)对于平面直角坐标系中的图形,给出如下定义:为图形上任意一点,为图形上任意一点,如果,两点间的距离有最小值,那么称这个最小值为图形,间
15、的“闭距离”,记作(,)已知点(,6),(,),(6,)(1)求(点,);(2)记函数(,)的图象为图形,若(,),直接写出的取值范围;(3)的圆心为(t,0),半径为1若(,),直接写出t的取值范围【答案】(1)2;(2)或;(3)或或【解析】(1)如下图所示:(,),(6,)(0,)(,)(2)或(3)或或14(2018北京中考真题)如图,是与弦所围成的图形的内部的一定点,是弦上一动点,连接并延长交于点,连接已知,设,两点间的距离为,两点间的距离为,两点间的距离为小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究下面是小腾的探究过程,请补充完整:(1)按照下表中自变量
16、的值进行取点、画图、测量,分别得到了,与的几组对应值;0123456(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点(,),(,),并画出函数,的图象;(3)结合函数图象,解决问题:当为等腰三角形时,的长度约为_【答案】(1)3.00;(2)作图见解析;(3)或或【解析】解:(1)(2)如下图所示:(3)或或如下图所示,函数图象的交点的横坐标即为所求15(2018北京中考真题)如图,是的直径,过外一点作的两条切线,切点分别为,连接,(1)求证:;(2)连接,若,求的长【答案】(1)证明见解析;(2).【解析】(1)证明:、与相切于、,平分在等腰中,平分于,即(2)解:连接、同理
17、:在等腰中,与相切于在中,一、单选题1(2022北京市广渠门中学模拟预测)如图,AB是圆锥的母线,BC为底面直径,已知,圆锥的侧面积为,则的值为()ABCD【答案】B【解析】BC为底面直径,已知,圆锥的侧面积为,中,故选:B2(2022北京大兴一模)如图,AB是的弦,半径于点D,若,则OB的长是()A3B4C5D6【答案】C【解析】解:AD=BDBD=AB=4设OB=x,OD=x-2由勾股定理得,即,解得:x=5故选:C3(2022北京平谷一模)如图,四边形ABCD内接于O,D110,则AOC的度数是()A55B110C130D140【答案】D【解析】解:,故选:D4(2022北京海淀一模)某
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-832717.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
重庆市渝东六校共同体2022-2023学年高一地理上学期期中联考试卷(PDF版带答案).pdf
